refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE46944
Transcription Factor Foxo1 Controls Memory CD8+ T Cell Responses To Infection
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80419
Il-22-Fc in cutaneous wound healing response
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon

Description

Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. When compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.

Publication Title

IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE40657
Novel Foxo1-dependent Transcriptional Programs Control Treg Cell Function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Novel Foxo1-dependent transcriptional programs control T(reg) cell function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15955
Expression data from colon epithelium of STAT3IEC-KO in acute DSS colitis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

STAT3 is a pleiotropic transcription factor with important functions in cytokine signalling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. Here we demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IEC). Studies in genetically engineered mice showed that epithelial STAT3 activation in DSS colitis is dependent on IL-22 rather than IL-6. IL-22 was secreted by colonic CD11c+ cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3IEC-KO mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis and pathways associated with wound healing in IEC. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

Publication Title

STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65472
Identification of IL-22 regulated genes in the ileum after infection with Toxoplasma gondii
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

IL-22 acts on epithelial cells and has been shown to induce tissue protective and wound healing responses in these cells. But it has recently been decribed that IL-22 exacerbates ileatis after infection with T. gondii.

Publication Title

Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection.

Sample Metadata Fields

Specimen part, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact