refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE11732
Runx transcriptional program for control of cell adhesion and survival
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

The Runx genes are important in development and cancer, where they can act either as oncogenes or tumour supressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias toward genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins reflecting the marked effects of Runx on cell adhesion.

Publication Title

Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25890
Expression data from mouse Nuocytes
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Nuocytes are a recently described cell that responds to both IL-25 and IL-33 and produce high levels of IL-13 and IL-5

Publication Title

Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE30248
Expression analysis of eu-miR-155 transgenic mice B-cells.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

miR-155 transgenic mice develop pre-B cell leukemia/lymphoma. Though some targets of miR-155 are known, understanding of the mechanism by which miR-155 overexpression drives malignant transformation is not known. MicroRNAs regulate multiple genes.

Publication Title

miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eμ-miR-155 transgenic mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact