refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE37383
Ulipristal and Progesterone Receptor
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE37354
Gene expression profiling of ovaries collected from wild type (WT) mice and progesterone receptor (PR) knock out mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Previous studies have shown that PR is a critical regulator of ovulation. The PR-null mice (PRKO) failed to ovulate due to a failure in the rupture of the preovulatory follicles.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37353
Gene expression profiling of ovaries collected from mice treated with or without Ulipristal
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Ulipristal acetate (UPA), also referred to as VA/CDB-2914, is a new and promising emergency contraceptive. It is a selective progesterone receptor modulator (SPRM) that has been approved in Europe and the USA for emergency contraception.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39807
Gene and microRNA expression data from tumor induced CD11b+ MDSC
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

Tumor growth is associated with a profound alteration of myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Immuno-regulatory activity of both tumor-induced and BM-derived MDSCs (by GM-CSF and IL-6 treatment) was entirely dependent on C/EBP transcription factor (TF), a key component of the emergency myelopoiesis triggered by stress and inflammation. We used miR expression analysis to identify miRs which could drive MDSC recruitment/generation/activity by modulating specific TFs and pathway. In particular, we identified a miR signature of 79 miR differentially expressed between not suppressive CD11b+ cells and CD11b+ isolated from tumor mass and spleen of tumor-bearing mice. Moreover on the same samples we profiled gene expression with Affymetrix microarrays to perform an integrated analysis of mirna and gene expression.

Publication Title

miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact