refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 36 results
Sort by

Filters

Technology

Platform

accession-icon GSE18746
Nave B cells vs germina center B cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Activation-induced cytidine deaminase (AID) is essential for the generation of antibody memory but also targets oncogenes among others. We investigated the transcriptional regulation of the AID gene, Aicda, in the class switchinducible CH12F3-2 cells, and found that the Aicda regulation involves derepression by several layers of positive regulatory elements in addition to the 5 promoter region. The 5 upstream region contains functional motifs for the response to signaling by cytokines, CD40-ligand, or stimuli that activate NF-B. The first intron contains functional binding elements for the ubiquitous silencers c-Myb and E2f and for B cellspecific activator Pax5 and E-box-binding proteins.

Publication Title

B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18600
Importance of histone demethylation in adipogenic differentiation and function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18598
Differentiating 3T3-L1 adipocytes, introduced with siRNA against aof2 and rfk genes, or treated with tranylcypromine
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Adipogenic differentiation and metabolic adaptation are initiated through transcriptional and epigenetic reprogramming. In particular, dynamic changes in histone modifications may play central roles in the rearrangement of gene expression patterns. LSD1 (KDM1) protein, encoded by aof2 gene, is a histone demethylase, which is involved in transcriptional regulation. Since the enzymatic activity of LSD1 is FAD (flavin adenine dinucleotide)-dependent, its effects on gene expression may be influenced by FAD availability.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18599
Differentiating 3T3-L1 adipocytes, introduced with siRNA against phf21a gene
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Adipogenic differentiation and metabolic adaptation are initiated through transcriptional and epigenetic reprogramming. In particular, dynamic changes in histone modifications may play central roles in the rearrangement of gene expression patterns. BHC80 protein, encoded by phf21a gene, is a part of LSD1 histone demethylase complex and is essential for the demethylation activity.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109839
Effect of LSD1 knockdown on differentiating C2C12 myoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of differentiating LSD1-KD C2C12 myoblasts. We found LSD1 is an important regulator of oxidative phenotypes in skeletal muscle cells.

Publication Title

LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10805
whole lungs: TAZ-deficient mice and their littermates
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

TAZ-deficient mice have the abnormalities in the lung development. We expect the comparison of the gene expression profiles of TAZ-deficient and wild-type lungs would reveal the underlying mechanisms.

Publication Title

Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12248
Genetic architecture of murine skin inflammation and tumor susceptibility
  • organism-icon Mus spretus, Mus musculus, Mus musculus x mus spretus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility.

Publication Title

Genetic architecture of mouse skin inflammation and tumour susceptibility.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24580
Diosgenin supplementation effect on liver
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Expression profile of liver of ICR mice (13-week old) treated with control diet (CRF-1) or CRF-1 containing 500 ppm diosgenin for 4 weeks.

Publication Title

Chemoprevention of azoxymethane/dextran sodium sulfate-induced mouse colon carcinogenesis by freeze-dried yam sanyaku and its constituent diosgenin.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE32082
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE32081
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers [Expression analysis]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Embryogenesis is tightly regulated by multiple levels of epigenetic systems such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent reprogramming occurs by de novo methylation and demethylation. Variance of DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analysed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions in the three germ layers and in the three adult somatic tissues are shared in common. This commonly methylated gene set is enriched in germ cell associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns with global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Taken together, our findings indicate that differentiation from ES cells to the three germ layers is accompanied by an increase in the number of commonly methylated DNA regions and that these tissue-specific alterations are present for only a small number of genes. Our findings indicate that DNA methylation at the proximal promoter regions of commonly methylated genes act as an irreversible mark which fixes somatic lineage by repressing transcription of germ cell specific genes.

Publication Title

DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact