refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 66 results
Sort by

Filters

Technology

Platform

accession-icon GSE62648
Gene expression profiles in dorsal skin of hairless mice orally administrated collagen hydrolysate for 1 week
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Dietary collagen hydrolysate has been conjectured to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsic aged mice. Female 9-week-old hairless mice were fed a control diet, or a collagen hydrolysate-containing diet, for 12 weeks. The stratum corneum water content and skin elasticity were sequentially decreased by chronological aging in control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we comprehensively analyzed gene expression in the skin of mouse, which had been administered collagen hydrolysate, using DNA microarray. Twelve weeks after start of collagen intake, no significant differences appeared in gene expression profile compared to that of control group. However, 1 week after administration, 135 genes were up-regulated and 448 genes were down-regulated in collagen group compared to control group. It is indicate that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms, especially related to epidermal cell development, were signicantly enriched in up-regulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation and suppress dermal degradation. Thus, dietary collagen hydrolysate induced positive gene changes. In conclusion, our results suggest that alteration of gene expression at early stages after collagen administration affect skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of the skin tissue.

Publication Title

Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE24574
Expression data from BCL6-YFP-positive Tfh cells, BCL6-YFP-negative Tfh cells, non-Tfh cells, and nave helper T cells.
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

We found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells.

Publication Title

Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18244
Lewis lung carcinoma cells and TDAG8 overexpression
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

We observed the effects of TDAG8-overexpression in Lewis lung carcinoma (LLC) cells on the gene expression pattern.

Publication Title

The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30701
In vivo Gene Expression Profiling of Retina Post-Intravitreal Injections of Dexamethasone and Triamcinolone at Clinically Relevant Time Points for Patient Care
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

PURPOSE To identify retinal genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care.

Publication Title

In vivo gene expression profiling of retina postintravitreal injections of dexamethasone and triamcinolone at clinically relevant time points for patient care.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE91394
Expression data from brains of BCAS1 knockout or wildtype mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to compare the expression profiles between brains of BCAS1 knockout and wild type mice

Publication Title

Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE64004
Expression data from ileum of mice suffered from subchronic and mild social defeat stress
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This study aimed to investigate the effects of depression on transcriptome in ileum using a subchronic and mild social defeat stress (sCSDS) model. In addition to exhibiting social deficit and hyperphagia-like behavior, the sCSDS mice keep much more water in their body than control mice. In order to investigate the effect of social defeat stress on not only central nervous system but also function of gastrointestinal tract, the gene expression in ileum of stressed mice was compared with control mice.

Publication Title

Omics Studies of the Murine Intestinal Ecosystem Exposed to Subchronic and Mild Social Defeat Stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE32574
Response of Atf3-/- and WT BMDMs to treatment with LPS for 4 h
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. Intimal macrophages internalize modified lipoproteins such as oxidized LDL (oxLDL) through scavenger receptors, leading to storage of excess cholesteryl esters in lipid bodies and a "foam cell" phenotype. In addition, stimulation of macrophage Toll-like receptors (TLRs) has been shown to promote lipid body proliferation. We investigated the possibility that there are transcriptional regulators that are common to both pathways for stimulating foam cell formation (modified lipoproteins and TLR stimulation), and identified the transcription factor ATF3 as a candidate regulator.

Publication Title

ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15129
Coenzyme Q10-dependent gene expression in SAMP1 mice tissues
  • organism-icon Mus musculus
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon

Description

Our present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (QH2, 500 mg/ kg BW/ day) of coenzyme Q10 (CoQ10). To unravel molecular mechanisms of these CoQ10 effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (QH2) or oxidized form of CoQ10 (Q10) was performed. Liver seems to be the main target tissue of CoQ10 intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that QH2 has a stronger impact on gene expression than Q10, which was primarily due to differences in the bioavailability. Indeed, we found that QH2 supplementation was more effective than Q10 to increase levels of CoQ10 in the liver of SAMP1 mice (54.92-fold and 30.36-fold, respectively). To identify functional and regulatory connections of the top 50 (p < 0.05) up- and down-regulated QH2-sensitive transcripts in liver (fold changes ranging from 21.24 to -6.12), text mining analysis (Genomatix BiblioSphere, GFG level B3) was used. Hereby, we identified 11 QH2-sensitive genes which are regulated by PPAR- and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL, HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). Thus, we provide evidence that QH2 is involved in the reduction of fat and cholesterol synthesis via modulation of the PPAR- signalling pathway. These data may explain, at least in part, the observed effects on decelerated age-dependent degeneration processes in QH2-supplemented SAMP1 mice.

Publication Title

Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE15181
Expression profiles of cancer cells with anchorage-independent growth ability
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15161
Expression data from retroviral vector-infected immortalized mouse embryonic fibroblasts (MEFs)
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

Cultured cancer cells exhibit substantial phenotypic heterogeneity when measured in a variety of ways such as sensitivity to drugs or the capacity to grow under various conditions. Among these, the ability to exhibit anchorage-independent cell growth (colony forming capacity in semisolid media) has been considered to be fundamental in cancer biology because it has been connected with tumor cell aggressiveness in vivo such as tumorigenic and metastatic potentials, and also utilized as a marker for in vitro transformation. Although multiple genetic factors for anchorage-independence have been identified, the molecular basis for this capacity is still largely unknown. To investigate the molecular mechanisms underlying anchorage-independent cell growth, we have used genome-wide DNA microarray studies to develop an expression signature associated with this phenotype. Using this signature, we identify a program of activated mitochondrial biogenesis associated with the phenotype of anchorage-independent growth and importantly, we demonstrate that this phenotype predicts potential for metastasis in primary breast and lung tumors.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact