refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE30701
In vivo Gene Expression Profiling of Retina Post-Intravitreal Injections of Dexamethasone and Triamcinolone at Clinically Relevant Time Points for Patient Care
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

PURPOSE To identify retinal genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care.

Publication Title

In vivo gene expression profiling of retina postintravitreal injections of dexamethasone and triamcinolone at clinically relevant time points for patient care.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26403
Gene therapy of Mpl -/- mouse LSK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Comparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression.

Publication Title

Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34731
Expression in LT-HSC after in vitro culture in mSCF, mTpo, mFlt3L, hIGFBP2 and Angptl5.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Mouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.

Publication Title

Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65859
Differentially regulated genes in adipocytes derived from Men1-null vs WT mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

MEN1 is a tumor suppressor gene loss of which causes lipoma (fatty tumors under the skin) and many other endocrine and non-endocrine tumors. It's target genes in fat cells (adipocytes) are unknown. Gene expression in adipocytes that were in vitro differentiated from mouse embryonic stem cells (mESCs) of Men1-nul l(Men1-KO) and WT mice were compared to assess the expression of genes upon menin loss in adipocytes that could lead to the deveopment of lipoma.

Publication Title

Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18387
Murine CD4+ T cells from DEREG mice expressing GFP under the control of the FoxP3 promotor
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Naturally occurring CD25+CD4+ regulatory T cells (T reg cells) are currently intensively characterized because of their major importance in modulating host responses to tumors and infections, in preventing transplant rejection, and in inhibiting the development of autoimmunity and allergy. Originally, CD4+ T reg cells were identified exclusively by the constitutive expression of CD25, and many in vivo experiments have been performed using depleting antibodies directed against CD25. However, both the existence of CD25 T reg cells, especially within peripheral tissues, as well as the expression of CD25 on activated conventional T cells, which precludes discrimination between T reg cells and activated conventional T cells, limits the interpretation of data obtained by the use of anti-CD25 depleting antibodies. The most specific T reg cell marker currently known is the forkhead box transcription factor Foxp3, which has been shown to be expressed specifically in mouse CD4+ T reg cells and acts as a master switch in the regulation of their development and function. To address the question of the in vivo role of T reg cells in immunopathology, we have generated bacterial artificial chromosome (BAC)transgenic mice termed depletion of regulatory T cell (DEREG) mice, which express a diphtheria toxin receptor (DTR) enhanced GFP (eGFP) fusion protein under the control of the foxp3 locus, allowing both detection and inducible depletion of Foxp3+ T reg cells. The gene expression profile of both CD4+eGFP+FoxP3+ and CD4+eGFPnegFoxP3neg cells isolated from DEREG mice was here analyzed by micro array.

Publication Title

Immunostimulatory RNA blocks suppression by regulatory T cells.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact