refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 24 results
Sort by

Filters

Technology

Platform

accession-icon GSE29485
Expression data from Mouse embryo
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Mice lacking the function of the PcG protein CBX2 (also known as M33) show defects in gonadal, adrenal, and splenic development. In particular, XY knockout mice develop ovaries but not testes, and the gonads are hypoplastic in both sexes.

Publication Title

Cbx2, a polycomb group gene, is required for Sry gene expression in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10216
Emx2 knock-out urogenital epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Series of samples studying effect of knock out Emx2 in urogenital epithelium of mouse embryos at E10.5.

Publication Title

Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87765
Expression data from precancerous mouse liver under PI3K signaling activation with or without Kdm3a defficiency
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Epigenetic gene regulation in various oncogenic pathways is currently an important focus of cancer research. The PI3K pathway plays a pivotal role in hepatocellular carcinoma, but the significance of histone modification in the PI3K pathway-dependent hepatotumorigenesis remains unknown.

Publication Title

Impact of histone demethylase KDM3A-dependent AP-1 transactivity on hepatotumorigenesis induced by PI3K activation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15053
Stepwise development of hematopoietic stem cells from embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

The cellular ontogeny of hematopoietic stem cells (HSCs) remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC) differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs) as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit+CD41+CD45- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs.

Publication Title

Stepwise development of hematopoietic stem cells from embryonic stem cells.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE13585
Expression data from BAT and liver of the KRAP deficient mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule. KRAP-deficient (KRAP-/-) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP-/- mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia.

Publication Title

Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13583
Expression data from liver of the KRAP deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule. KRAP-deficient (KRAP-/-) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP-/- mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia.

Publication Title

Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27787
Hematopoietic cells and stem cells
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27785
Gene expression profile of mouse hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Mouse CD34(-)KSL hematopoietic stem cells and CD34(+)KSL multipotent progenitors were purified by cell sorting from bone marrow of 8-week-old C57BL/6 mice, and their gene expression was analyzed.

Publication Title

Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62173
Expression data of mice cochlea treated with L-methionine and valproic acid.
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Treatment of DBA/2J mice with a combination of L-methionine and valproic acid significantly attenuated progressive hearing loss. We examined gene expression in the whole cochlea of the mice. This study was aimed to detect genes of which change in expression levels were associated with attenuation of progressive hearing loss in the mice.

Publication Title

Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE68293
Gene expression microarray analysis on the dentate gyrus of alpha-CaMKII HKO mice
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon

Description

We previously found that mice with heterozygous knockout of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII HKO mice) show various dysregulated behaviors, including cyclic variations in locomotor activity (LA), suggesting that alpha-CaMKII HKO mice may serve as an animal model showing infradian oscillation of mood. We performed gene expression microarray analysis of dentate gyrus from alpha-CaMKII HKO mice. Mice were selected for the sampling such that their LA levels varied among the mice.

Publication Title

Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact