refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 23 results
Sort by

Filters

Technology

Platform

accession-icon GSE59557
Expression data of in vitro generated regulatory T cells overexpressing E47
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

E47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.

Publication Title

Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE4671
Microarray Analysis of the Delipidation of White Adipose Tissue of Mice Fed Conjugated Linoleic Acid
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon

Description

The white adipose tissue (WAT) rapidly loses mass when mice are fed a diet containing trans-10, cis-12 conjugated linoleic acid (t10c12 CLA). A microarray analysis of WAT due to CLA feeding was performed to better define the processes and genes involved. WAT weight decreased by ca. 80% over 17 days of feeding a 0.5% t10c12 CLA diet. The lipid volume decreased by 90% and the number of adipocytes and total cells were reduced by15% and 47%, respectively. Microarray profiling of replicated pools of control and treated mice (n=140) at seven time points over the 17day feeding indicated between 2798 to 4318 genes showed mRNA changes of 2-fold or more. Transcript levels for genes of glucose and fatty acid import or biosynthesis were significantly reduced. A prolific inflammation response was indicated by the 2 to100-fold induction of many cytokine transcripts, including those for IL-6, IL1?, TNF ligands, and CXC family members

Publication Title

Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis.

Sample Metadata Fields

Age

View Samples
accession-icon GSE17404
Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes.

Publication Title

Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE19402
Gene expression data from hippocampus, striatum, hypothalamus cortex, Drd2-MSNs and Drd1-MSNs in mice
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon

Description

Goal of the experiment: Analysis of gene expression changes in the cortex, striatum, hippocampus, hypothalamus, Drd2-MSNs and Drd1-MSNs of mice with a postnatal, neuron-specific ablation of GLP or G9a as compared to control mice.

Publication Title

Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11384
Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE8684
Gene expression in mouse 3T3-L1 adipocyte tissue culture treated with cis-9,trans-11 conjugated linoleic acid(c9t11 CLA)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse 3T3-L1 adipocyte tissue culture; however cis-9, trans-11 CLA does not (this series). The early transcriptome changes were analyzed using high-density microarrays to better characterize the signaling pathways responding to c9t11 CLA. Their gene expression responses between 8 to 12 hr after treatment showed no gene expression changes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE47798
Perinatal-Estrogen-Induced Changes in Gene Expression Related to Brain Sexual Differentiation in Mice
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon

Description

Sexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. The goal of this study is to identify genes mediating sexaul dimorphism of the brain.

Publication Title

Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE10017
Podocytes use FcRn to clear IgG from the glomerular basement membrane
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The glomerular filtration barrier prevents large serum proteins from being lost into the urine. It is not known, however, why the filter does not routinely clog with large proteins that enter the glomerular basement membrane (GBM). Here we provide evidence that an active transport mechanism exists to remove immunoglobulins that accumulate at the filtration barrier. We found that FcRn, an IgG and albumin transport receptor, is expressed in podocytes and functions to internalize IgG from the GBM. Mice lacking FcRn accumulated IgG in the GBM as they aged and tracer studies showed delayed clearance of IgG from the kidneys of FcRn deficient mice. Supporting a role for this pathway in disease, saturating the clearance mechanism potentiated the pathogenicity of nephrotoxic sera. These studies support the idea that podocytes play an active role in removing proteins from the GBM and suggest that genetic or acquired impairment of the clearance machinery is likely to be a common mechanism promoting glomerular diseases.

Publication Title

Podocytes use FcRn to clear IgG from the glomerular basement membrane.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Sample Metadata Fields

Genetic information

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact