refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE108036
Comparative analysis of cartilage tissue from ANP32A knockout mice and wildtype C57/Bl6 mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

A genetic association between the ANP32A gene and osteoarthritis has been suggested. We compared transcriptome profiles of the articular cartilage and subchondral bone from mice deficient in ANP32A with wild-type mice to get insights into the role of ANP32A in the pathogenesis of ostearthritis.

Publication Title

ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE87557
Role of annexin A2 in muscle repair
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Repair of injured muscle involves repair of injured myofibers through the involvement of dysferlin and its interacting partners, including annexin. Studies with mice and patients have established that dysferlin deficit leads to chronic inflammation and adipogenic replacement of the diseased muscle. However, longitudinal analysis of annexin deficit on muscle pathology and function is lacking. Here we show that unlike annexin A1, but similar to dysferlin, lack of annexin A2 (AnxA2) causes poor myofiber repair and progressive weakening with age. However, unlike dysferlin-deficient muscle, AnxA2-deficient muscles do not exhibit chronic inflammation or adipogenic replacement. Deletion of AnxA2 in dysferlin deficient mice reduces inflammation, adipogenic replacement, and loss in muscle function caused by dysferlin deficit. These results show that: a) AnxA2 facilitates myofiber repair, b) chronic inflammation and adipogenic replacement of dysferlinopathic muscle requires AnxA2, and c) inhibiting AnxA2-mediated inflammation is a novel therapeutic avenue for dysferlinopathy.

Publication Title

Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE14024
Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell types and has been implicated in multiple aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that selective inhibition of the pathway might yield clinically effective therapeutics. Here we describe A-928605, a novel small molecule inhibitor of the receptor tyrosine kinase responsible for IGF signal transduction. This small molecule is able to abrogate activation of the pathway as shown by effects on the target and downstream effectors and is shown to be effective at inhibiting the proliferation of an oncogene addicted tumor model cell line (CD8-IGF1R 3T3) both in vitro and in vivo.

Publication Title

Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact