refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE7487
Gene profiling of pathological cardiac hypertrophy vs physiological hypertrophy
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

Cardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exercise training or pathological stimuli eg pressure or volume overload. Majority of new therapies for heart failure has mixed outcomes. A combined mouse model and oligo-array approach are used to examine whether phosphoinositide 3-kinase (p110-alpha isoform) activity is critical for maintenance of cardiac function and long-term survival in a setting of heart failure. The significance and expected outcome are to recognise genes involved in models of heart failure ie pathological- vs physiology-hypertrophy, and examine the molecular mechanisms responsible for such activity.

Publication Title

PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39583
Transcriptional response of cap mesenchyme (undifferentiated nephron progenitors) to Wnt activation
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

During mammalian kidney development, mesenchymal nephron progenitors (cap mesenchyme) differentiate into the epithelial cells that go on to form the nephron. Although differentiation of nephron progenitors is triggered by activation of Wnt/b-catenin signaling, constitutive activation of Wnt/b-catenin signaling blocks epithelialization of nephron progenitors. Full epithelialization of nephron progenitors requires transient activation of Wnt/b-catenin signaling. We performed transcriptional profiling of nephron progenitors responding to constitutive or transient activation of Wnt/b-catenin signaling.

Publication Title

Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9460
Mouse model of Osteosarcoma
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

expression analysis from a genetically engineered mouse model of osteosarcoma

Publication Title

Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11859
Acquisition of granule neuron precursor identity and Hedgehog-induced medulloblastoma in mice.
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon

Description

Origins of the brain tumor, medulloblastoma, from stem cells or restricted pro-genitor cells are unclear. To investigate this, we activated oncogenic Hedgehog signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipo-tent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ rhombic lip progenitors. Hedgehog activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hedgehog signaling promotes medulloblastoma from lineage-restricted granule cell progenitors.

Publication Title

Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6934
Transcriptional comparison between whole kidneys from E14.5 Wnt4 mutants and wildtype mice (Mouse430_2 platform). (GUDMAP Series ID: 13)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Our laboratory's interest is in understanding the molecular principles that underlie the regional organization of the mammalian metanephric kidney. Our goal is to generate a detailed spatial map of the cellular expression of selected regulatory genes during mammalian kidney development. The goal of this study is to identify a population of genes that are enriched in the renal vesicle (RV) and its derivatives using Wnt4 mutants.

Publication Title

Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE42594
cis-Regulation of Shh-directed neural pattering
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE42565
Transcriptional responses to Sonic Hedgehog pathway stimulation in in vitro derived neural progenitors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The objective of this study was to identify genes regulated by Sonic Hedgehog pathway stimulation in neural progenitors.

Publication Title

Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact