refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE16516
Distinct Self-renewal and Differentiation Phases in the Niche of Infrequently Dividing Hair Follicle Stem Cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

In homeostasis of adult vertebrate tissues, stem cells are thought to self-renew by infrequent and asymmetric divisions that generate another stem cell daughter and a progenitor daughter cell committed to differentiate. This model is based largely on in vivo invertebrate or in vitro mammal studies. Here we examine the dynamic behaviour of adult hair follicle stem cells in their normal setting by employing mice with repressible H2B-GFP expression to track cell divisions and Cre inducible mice to perform long-term single cell lineage tracing. We provide direct evidence for the infrequent stem cell division model in intact tissue. Moreover, we find that differentiation of progenitor cells occurs at different times and tissue locations than self-renewal of stem cells. Distinct fates of differentiation or self-renewal are assigned to individual cells in a temporal-spatial manner. We propose that large clusters of tissue stem cells behave as populations, whose maintenance involves unidirectional daughter-cell fate decisions.

Publication Title

Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30957
Expression data from mouse embryo during neural tube closure
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

This data series was used for two separate studies. The initial study was aimed to idenify expression changes brought about by the Cecr2Gt45Bic mutation during neural closure. The study included two different strains, BALB/cCrl in which Cecr2GT45Bic shows a neural tube defect phenotype and FVB/N in which Cecr2Gt45Bic does not manifest neural closure defects. The second was to idenify strain specific expression differences present during neural closure of the mouse embryo between BALB/cCrl and FVB/N in order to identify candidate modifiers of the Cecr2Gt45Bic neural tube defect. Relevant abstracts are included below.

Publication Title

Strain-specific modifier genes of Cecr2-associated exencephaly in mice: genetic analysis and identification of differentially expressed candidate genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21056
Differential roles of Sall4 isoforms in ES cell pluripotency
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differential roles of Sall4 isoforms in embryonic stem cell pluripotency.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21054
Differential roles of Sall4 isoforms in ES cell pluripotency: expression
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Murine embryonic stem cells (ESCs) are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing are expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). By genome-wide location analysis, we have determined that Sall4b, and not Sall4a, binds preferentially to highly expressed loci in ES cells. Sall4a and Sall4b binding sites are distinguished by both epigenetic marks at target loci and their clustering with binding sites of other pluripotency factors. When ESCs expressing a single isoform of Sall4 are generated, Sall4b alone could maintain the pluripotent state, although it could not completely suppress all differentiation markers. Sall4a and Sall4b collaborate in maintenance of the pluripotent state, but play distinct roles. Our work is novel in establishing such isoform-specific differences in ES cells.

Publication Title

Differential roles of Sall4 isoforms in embryonic stem cell pluripotency.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11259
Role of epithelial to mesenchymal transition (EMT) in spontaneous breast cancer metastasis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Epithelial-mesenchymal transition (EMT) has been linked to cancer progression and metastatic propensity. The 4T1 tumor is a clinically relevant model of spontaneous breast cancer metastasis. Here we characterize 4T1-derived cell lines for EMT, in vitro invasiveness and in vivo metastatic ability. Contrary to expectations, the 67NR cells, which form primary tumors but fail to metastasize, express vimentin and N-cadherin, but not E-cadherin. 4T1 cells, however, express E-cadherin, are highly migratory and invasive, and metastasize to multiple sites. The 66cl4 metastatic cells display mixed epithelial and mesenchymal markers, but are less migratory and invasive than 67NR cells. These findings demonstrate that the metastatic ability of breast cancer cells does not correlate with genotypic and phenotypic properties of EMT per se, and suggest that other processes may govern metastatic capability. Gene expression analysis also has not identified differences in EMT markers, but has identified several candidate genes that may influence metastatic ability.

Publication Title

Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP319070
Rate of recipient-derived alveolar macrophages development and major histocompatibility complex cross-dressing after lung transplantation in humans
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina NovaSeq 6000

Description

Analyzing the kenetics of alveolar macrophage turnover after human lung transplantation and identifying protein and transcriptional differences between donor and recipient-derived alveolar macrophages Overall design: Bulk RNA sequencing performed from FACS sorted donor and recipient-derived alveolar macrophages derived from the bronchoalveolar lavage of lung transplant recipients, defined as CD45+, Live, lineage negative, CD64+CD206+ cells.

Publication Title

Rate of recipient-derived alveolar macrophage development and major histocompatibility complex cross-decoration after lung transplantation in humans.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact