refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE19372
Expression time series during the differentiation of ventral motor neurons from embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

The aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7).

Publication Title

Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE23200
Immunoprotective properties of sertoli cells: potential genes and pathways that confer immune privilege for sertoli cell transplantation and in the testis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Immune privileged Sertoli cells (SC) survive when transplanted across immunological barriers and prolong the survival of co-transplanted allogeneic and xenogeneic cells in rodent models. However, the mechanism for this survival and protection remains unresolved. We have recently identified a mouse Sertoli cell line (MSC-1) that lacks some of the immunoprotective abilities associated with primary SC. The objective of this study was to compare the survival and gene expression profiles of primary SC and MSC-1 cells to identify factors or immune-related pathways potentially important for SC immune privilege. Primary SC or MSC-1 cells were transplanted as allografts to the renal subcapsular area of nave BALB/c mice and cell survival was analyzed by immunohistochemistry. Additionally, transcriptome differences were investigated by microarray and pathway analyses. While primary SC were detected within the grafts with 100% graft survival throughout the 20-day study, MSC-1 cells w ere rejected between 11 and 14 days with 0% graft survival at 20 days post-transplantation. Microarray analysis identified 3198 genes that were differentially expressed with a 4-fold or higher level in primary SC. Cluster and pathway analyses indicate that the mechanism of SC immune privilege is likely complex with multiple immune modulators being involved such as immunosuppressive cytokines and complement inhibitors, lipid mediators for controlling inflammation, and junctional molecules that control leukocyte movement in and out of the immune privileged space. Further study of these immune modulators will increase our understanding of SC immune privilege and in the long-term lead to improvements in transplantation success.

Publication Title

Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE13948
Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver

Publication Title

Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33368
Gene expression atlas for mouse olfactory sensory neurons
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Identification of all genes expressed by mouse olfactory sensory neurons; genes expressed in mature neurons, immature neurons, or both were distinguished. Independent validation of enrichment ratio values supported by statistical assessment of error rates was used to build a database of statistical probabilities of the expression of all mRNAs detected in mature neurons, immature neurons, both types of neurons (shared), and the residual population of all other cell types.

Publication Title

Genomics of mature and immature olfactory sensory neurons.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE10970
Efficient Array-based Identification of Novel Cardiac Genes through Differentiation of Mouse ESCs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Cardiac disease accounts for the largest proportion of adult mortality and morbidity in the industrialized world. However, progress toward improved clinical treatments is hampered by an incomplete understanding of the genetic programs controlling early cardiogenesis. To better understand this process, we set out to identify genes whose expression is enriched within early cardiac fated populations, obtaining the transcriptional signatures of mouse embryonic stem cells (mESCs) differentiating along a cardiac path.

Publication Title

Efficient array-based identification of novel cardiac genes through differentiation of mouse ESCs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23396
Background analysis using yeast RNA on the mouse and human array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE22975
Background analysis using yeast RNA on the Mouse 430 2.0 array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

We hybridized yeast RNA to the mouse 430 2.0 array to estimate the background binding for each probe.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE5671
Cardiac differentiation of embryonic stem cells recapitulates embryonic cardiac development.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Mouse embryonic stem cells can differentiate in vitro into spontaneously contracting cardiomyocytes. The main objective of this study was to investigate cardiogenesis in cultures of differentiating embryonic stem cells (ESCs) and to determine how closely it mimics in vivo cardiac development. We identified and isolated a population of cardiac progenitor cells (CPCs) through the use of a reporter DNA construct that allowed the expression of a selectable marker under the control of the Nkx2.5 enhancer. We proceeded to characterize these CPCs by examining their capacity to differentiate into cardiomyocytes and to proliferate. We then performed a large-scale temporal microarray expression analysis in order to identify genes that are uniquely upregulated or downregulated in the CPC population. We determined that the transcriptional profile of the mESC derived CPCs was consistent with pathways known to be active during embryonic cardiac development. We conclude that in vitro differentiation of mESCs recapitulates the early steps of mouse cardiac development.

Publication Title

Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43716
Microarray to find CHOP/ATF5 dependent genes in response to proteasome inhibition
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE43713
Microarray to find CHOP dependent genes in response to proteasome inhibition
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the Integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switch to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study was to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP induces the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly activated by both CHOP and ATF4. Knock-down of ATF5 increased cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have pro-apoptotic functions. Transcriptome analyses of ATF5-dependent genes revealed targets involved in apoptosis, including, NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feed-forward loop of stress induced transcriptional regulators, each subject to transcriptional and translational control that can switch cell fate towards apoptosis.

Publication Title

CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact