refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 49 results
Sort by

Filters

Technology

Platform

accession-icon GSE10765
Expression data from MALP-2-stimulated macrophages from wild-type, IRAK-2-/- and IRAK-1-/IRAK-2-/- mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

IL-1R-associated kinases (IRAKs) participate in Toll-like receptor (TLR) signal transduction. MALP-2 is a TLR2 ligand, and stimulation of macrophages with MALP-2 activates expression of various genes including proinflammatory cytokines.

Publication Title

Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23306
The JMJD3-IRF4 axis regulates M2 macrophage polarization and host responses against helminth infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Polarization of macrophages to M1 or M2 cells is important for mounting responses against bacterial and helminth infection respectively. Jumonji domain containing 3 (JMJD3), a histone 3 K27 demethylase, has been implicated in the activation of macrophages. Here we show that JMJD3 is essential for M2 macrophage polarization to helminth infection and chitin, though JMJD3 is dispensable for M1 responses. Furthermore, Jmjd3 is critical for proper bone marrow macrophage differentiation in a demethylase activity-dependent manner. Jmjd3 deficiency affected trimethylation of H3K27 in only a limited numbers of genes. Among them, we identified Irf4 as the target transcription factor critical for controlling M2 macrophage polarization. Collectively, these results show that JMJD3-mediated H3K27 demethylation is critical for regulating M2 macrophage development leading to anti-helminth host responses.

Publication Title

The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE28895
Expression data from stomach of germ-free and gnotobiotic mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The aim of this study was to examine the role of indigenous lactobacilli in the physiological development of the stomach in mice using microarray analysis. In lactobacilli-associated gnotobiotic mice, an increased expression of the genes related to the muscle system development, such as nebulin and troponin, was observed. On the other hand, the expression of the gastrin gene dramatically decreased. A microarray analysis of the stomachs infected with H. pylori also showed both the up-regulation of muscle cell genes and the down-regulation of gastrin genes.

Publication Title

Role of indigenous lactobacilli in gastrin-mediated acid production in the mouse stomach.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36814
Role for DNA methylation in response to Gata4 activation in embryonic stem cell-derived mesoderm
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

During embryogenesis, many key transcription factors are used repeatedly, achieving different outcomes depending on cell type and developmental stage. The epigenetic modification of the genome functions as a memory of a cells developmental history, and it has been proposed that such modification shapes the cellular response to transcription factors. To investigate the role of DNA methylation in the response to transcription factor Gata4, we examined expression profiles of Dnmt3a-/-Dnmt3b-/- ES cell-derived mesoderm cells cultured for 4 days with or without Gata4 activation, as well as the wild-type counterparts, using Affymetrix microarrays.

Publication Title

DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62173
Expression data of mice cochlea treated with L-methionine and valproic acid.
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Treatment of DBA/2J mice with a combination of L-methionine and valproic acid significantly attenuated progressive hearing loss. We examined gene expression in the whole cochlea of the mice. This study was aimed to detect genes of which change in expression levels were associated with attenuation of progressive hearing loss in the mice.

Publication Title

Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE53826
Expression data from bone marrow (BM) neutrophils
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

We employed GeneChip analysis to investigate the global gene expression profiles of neutrophils from BM

Publication Title

Neutrophil priming occurs in a sequential manner and can be visualized in living animals by monitoring IL-1β promoter activation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10634
Aquaporin-11 knockout effect on kidney
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Aquaporin-11 (AQP11), a new member of the aquaporin family, is localized in the endoplasmic reticulum (ER). Aqp11/ mice neonatally suffer from polycystic kidneys derived from the proximal tubule. Its onset is proceeded by the vacuolization of ER. However, the mechanism for the formation of vacuoles and the development of cysts remain to be clarified. Here, we show that Aqp11/ mice and polycystic kidney disease animals share a common pathogenic mechanism of cyst formation.

Publication Title

Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE19518
Microarray analysis of CA-AhR transgenic mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We have generated transgenic mice expressing constitutively activated aryl hydrocarbon receptor (CA-AhR) to examine the biological consequences of AhR activation..

Publication Title

A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45229
Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Quetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics. It is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. However, its cellular effects remain elusive.

Publication Title

Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE15181
Expression profiles of cancer cells with anchorage-independent growth ability
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact