refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE47798
Perinatal-Estrogen-Induced Changes in Gene Expression Related to Brain Sexual Differentiation in Mice
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon

Description

Sexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. The goal of this study is to identify genes mediating sexaul dimorphism of the brain.

Publication Title

Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8949
Gene expression changes in mouse aorta during activation of or interference with PPAR gamma signaling.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

Ligand-mediated activation of the nuclear hormone receptor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. Two naturally occurring mutations (P467L, V290M) in the ligand binding domain of PPAR gamma have been described in humans that lead to severe insulin resistance and hypertension. Experimental evidence suggests that these mutant versions of PPAR gamma act in a dominant negative fashion. To better understand the molecular mechanisms underlying PPAR gamma action in the vasculature, we determined the gene expression patterns in mouse aorta in response to activation or interference with the PPAR gamma signaling pathway.

Publication Title

Bioinformatic analysis of gene sets regulated by ligand-activated and dominant-negative peroxisome proliferator-activated receptor gamma in mouse aorta.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98761
DNA microarray analysis of Jmjd1a and/or Jmjd1b knockout embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Histone H3 lysine 9 (H3K9) methylation is an epigenetic mark of transcriptionally repressed chromatin. During mammalian development, H3K9 methylation levels seem to be spatiotemporally regulated by the opposing activities of methyltransferases and demethylases to govern correct gene expression. However, the combination(s) of H3K9 methyltransferase(s) and demethylase(s) that contribute to this regulation and the genes regulated by them remain unclear. Herein, we demonstrate the essential roles of H3K9 demethylases Jmjd1a and Jmjd1b in the embryogenesis and viability control of embryonic stem (ES) cells. Mouse embryos lacking Jmjd1a/Jmjd1b died after implantation. Depletion of Jmjd1a/Jmjd1b in mouse ES cells induced rapid cell death accompanied with a massive increase in H3K9 methylation. Jmjd1a/Jmjd1b depletion induced an increase in H3K9 methylation in the gene-rich regions of the chromosomes, indicating that Jmjd1a/Jmjd1b removes H3K9 methylation marks in the euchromatin. Importantly, the additional disruption of the H3K9 methyltransferase G9a in a Jmjd1a/Jmjd1b-deficient background rescued not only the H3K9 hypermethylation phenotype but also the cell death phenotype. We also found that Jmjd1a/Jmjd1b removes H3K9 methylation marks deposited by G9a in the Oct4 and Ccnd1 loci to activate transcription. In conclusion, Jmjd1a/Jmjd1b ensures ES cell viability by antagonizing G9a-mediated H3K9 hypermethylation in the gene-rich euchromatin.

Publication Title

Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12505
Plasmacytoid dendritic cells (pDCs) from E2-2 heterozygous mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.

Publication Title

Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34731
Expression in LT-HSC after in vitro culture in mSCF, mTpo, mFlt3L, hIGFBP2 and Angptl5.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Mouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.

Publication Title

Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84245
PRC2 controls adult neuron identity and protects neurons against neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE84243
Microarray analysis of striatal tissue of wild type and Ezh1/Ezh2 dKO mice at 6 weeks, 3 months, and 6 months
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

Normal brain function critically depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. The fidelity of neuronal specification is contingent upon the robustness of the transcriptional program that supports the neuron type-specific patterns of gene expression. Changes in neuron type-specific gene expression are commonly associated with neurodegenerative disorders including Huntingtons and Alzheimers disease. The neuronal specification is driven by gene expression programs that are established during early stages of neuronal development and remain in place in the adult brain. Here we show that the Polycomb repressive complex 2 (PRC2), which supports neuron specification during early differentiation, contributes to the suppression of the transcription program that can be detrimental for the adult neuron function. We show that PRC2 deficiency in adult striatal neurons and in cerebellar Purkinje cells impairs the maintenance of neuron-type specific gene expression. The deficiency in PRC2 has a direct impact on a selected group of genes that is dominated by self-regulating transcription factors normally suppressed in these neurons. The age-dependent progressive transcriptional changes in PRC2-deficient neurons are associated with impaired neuronal function and survival and lead to the development of fatal neurodegenerative disorders in mice.

Publication Title

Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43581
Hepatic glucose sensing is required to preserve beta-cell glucose competence
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We assessed the impact of glucose transporter Glut2 gene inactivation in adult mouse liver (LG2KO mice). This suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was normal early after Glut2 inactivation but intolerance developed at later time. This was caused by progressive impairment of glucose-stimulated insulin secretion even though beta-cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinate down-regulation of cholesterol biosynthesis genes in LG2KO mice. This was associated with reduced hepatic cholesterol in fasted mice and a 30 percent reduction in bile acid production. We showed that chronic bile acids or FXR agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from fxr-/- mice. Collectively, our data show that glucose sensing by the liver controls beta-cell glucose competence, through a mechanism that likely depends on bile acid production and action on beta-cells.

Publication Title

Hepatic glucose sensing is required to preserve β cell glucose competence.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact