refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE15173
Dppa4 is dispensable for embryonic stem cell identity and germ cell development, but essential for embryogenesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Dppa4 (Developmental pluripotency-associated 4) has been identified in several highprofile screens as a gene that is expressed exclusively in pluripotent cells. It encodes a nuclear protein with a SAP-like domain and appears to be associated preferentially with transcriptionally active chromatin. Its exquisite expression pattern and results of RNA interference experiments have led to speculation that Dppa4, as well as its nearby homolog Dppa2, might play essential roles in embryonic stem cell function and/or germ cell development. To rigorously assess suggested roles, we have generated Dppa4-deficient and Dppa4/Dppa2 double-deficient ES cells, as well as mice lacking Dppa4. Contrary to predictions, we find that Dppa4 is completely dispensable for ES cell identity and germ cell development. Instead, loss of Dppa4 in mice results in late embryonic/peri-natal death and striking skeletal defects with partial penetrance. Thus, surprisingly, Dppa4-deficiency affects tissues, which never transcribed the gene, and at least some loss-of-function defects manifest phenotypically at an embryonic stage long after physiologic Dppa4 expression has ceased. Concomitant with targeted gene inactivation, we have introduced into the Dppa4 locus a red fluorescent marker (tandem-dimer RFP), which is compatible with GFP-based proteins and allows non-invasive visualization of pluripotent cells and reprogramming events.

Publication Title

The pluripotency-associated gene Dppa4 is dispensable for embryonic stem cell identity and germ cell development but essential for embryogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27816
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Recurrent somatic mutations in TET2 and in other genes that regulate the epigenetic state have been identified in patients with myeloid malignancies and in other cancers. However, the in vivo effects of Tet2 loss have not been delineated. We report here that Tet2 loss leads to increased stem-cell self-renewal and to progressive stem cell expansion. Consistent with human mutational data, Tet2 loss leads to myeloproliferation in vivo, notable for splenomegaly and monocytic proliferation. In addition, haploinsufficiency for Tet2 confers increased self-renewal and myeloproliferation, suggesting that the monoallelic TET2 mutations found in most TET2-mutant leukemia patients contribute to myeloid transformation. This work demonstrates that absent or reduced Tet2 function leads to enhanced stem cell function in vivo and to myeloid transformation.

Publication Title

Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84309
Gene expression profiles of KDM5A-/- MEFs with wild-type KDM5A or KDM5A-H483A mutant
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression profiles of Immortalized KDM5A-/- MEFs with re-introduction of wild-type KDM5A or KDM5A-H483A mutant.

Publication Title

The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17840
Hedgehog is an anti-inflammatory epithelial signal for the intestinal lamina propria
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Epithelial Hedgehog (Hh) ligands regulate several aspects of fetal intestinal organogenesis and emerging data implicate the Hh pathway in inflammatory signaling in adult colon. We investigated the effects of chronic Hh inhibition in vivo and profiled molecular pathways acutely modulated by Hh signaling in the intestinal mesenchyme.

Publication Title

Hedgehog is an anti-inflammatory epithelial signal for the intestinal lamina propria.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE113968
The induction and transcriptional regulation of the co-inhibitory gene module in T cells by IL-27
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Induction and transcriptional regulation of the co-inhibitory gene module in T cells.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact