refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 65 results
Sort by

Filters

Technology

Platform

accession-icon GSE13948
Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver

Publication Title

Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39388
Distinct transcriptional programs controlled by ERG and ETV1 in prostate cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE39355
Expression profiling of mouse primary prostate luminal cells from WT and T-ETV1 mice, which contains human ETV1 cDNA under the endogenous Tmprss2 promoter.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Chromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine mouse prostate cells from WT mice with s with T-ETV1 mice, which contains express the truncated human ETV1 under the endogenous Tmprss2 promoter. ETV1 expression can be tracked by GFP expression.

Publication Title

ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27975
HL-1 cardiomyocyte response to hypoxia
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Expression profiling of cultured HL-1 cardiomyocytes subjected to hypoxia for 8 hours.

Publication Title

The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE8874
Factorial Microarray Analysis of Zebrafish Retinal Development
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Retinal cells are specified in a zebrafish recessive mutant called young (yng) but they fail to terminally differentiate; i.e. extend neurites and make synaptic contacts. A point mutation in a brahma-related gene 1 (brg1) is responsible for this phenotype. In this microarray study, a three-factor factorial design was utilized to investigate the effects of 1) mutation, 2) change in time (36 vs. 52hpf), and 3) change in tissue (retina vs. whole embryos), and their interactions on gene expression. Significant probesets were inferred by using both specific contrasts of the fitted Analysis of Variance (ANOVA) models and a corresponding 2-fold expression cutoff. The probesets were grouped into three broad categories: 1) Brg1-regulated retinal differentiation genes (731 probsets), 2) Retinal specific genes but independent of Brg1 regulation (3038 probesets) and 3) Genes regulated by Brg1 but outside the retina (107 probesets). Four gene groups/pathways including neurite outgrowth regulators, Delta-Notch signalling molecules, Irx family members and specific cell cycle regulators were identified in the first group, and their relevance for retinal differentiation functionally validated. This study demonstrates that an approach such as ours can identify relevant genes and pathways involved in retinal development as well as the development of other tissues at the same time.

Publication Title

Factorial microarray analysis of zebrafish retinal development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15770
WT and Get1 +/- Bladder Time Course
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Skin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.

Publication Title

The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15768
Expression profiling of Get1 -/- bladder
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Skin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.

Publication Title

The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23014
Comprehensive profiling of the early lung immune responses in the mouse model of tuberculosis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

The lung host immune responses following M.tuberculosis infection in the mouse model of tuberculosis were assayed by studying the gene expression profiles at day 0, day 12, 15 and 21 post infection

Publication Title

Profiling early lung immune responses in the mouse model of tuberculosis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE43928
Expression data from TNF-stimulated mouse glomeruli
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The specific contribution of the two TNF-receptors Tnfr1 and Tnfr2 to TNF-induced inflammation in the glomerulus is unknown. In mice, TNF exposure induces glomerular expression of inflammatory mediators like adhesion molecules and chemokines in vivo, and glomerular accumulation of leukocytes.

Publication Title

Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE24346
Identification of differentially expressed genes in Sfmbt1-knockdown C2C12 myoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression profiling was performed to identify Sfmbt1-dependent regulation in myogenic programs. To establish the magnitude of the Sfmbt1 effect on muscle cells, we have compared gene expression profiles of C2C12 cells transduced with lentiviruses expressing scramble shRNA control or shSfmbt1. Our analysis suggested that Sfmbt1 critically confers transcriptional silencing of muscle genes in myogenic progenitor cells.

Publication Title

Proteomic and functional analyses reveal the role of chromatin reader SFMBT1 in regulating epigenetic silencing and the myogenic gene program.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact