refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE17962
Expression data from regulatory T cells with Stat3 ablation
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global programme of gene expression dependent upon Stat3 in regulatory T cells

Publication Title

CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE129309
Expression data from WT and KO of Myc in innate lymphoid cell 2 (ILC2) in mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Group-2 innate lymphoid cells (ILC2) serve crucial function in allergy and asthma. Activated ILC2 rapidly proliferate and secret large amounts of type-2 cytokines, such as IL-5 and IL-13. Mechanisms underlying still remain ambiguous. Here we report that Myc is required for ILC2 proliferation and activation in allergic airway inflammation. Inhibition of Myc impair the ILC2 proliferation in vivo and prevented ILC2-mediated airway hyperresponsiveness in vivo.

Publication Title

A critical role for c-Myc in group 2 innate lymphoid cell activation.

Sample Metadata Fields

Genotype, Cell line

View Samples
accession-icon GSE13432
Adipose tissue exposed to cold
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Cold triggers VEGF dependent but hypoxia independent angiogenesis in adipose tissues and anti-VEGF agents modulate adipose metabolism

Publication Title

Hypoxia-independent angiogenesis in adipose tissues during cold acclimation.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE27322
de novo DNA Methylation Balances Hematopoietic Stem Cell Self-Renewal and Differentiation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Cytosine methylation is an epigenetic mark usually associated with gene repression. Despite a requirement for de novo DNA methylation for differentiation of embryonic stem cells, its role in somatic stem cells is unknown. Using conditional ablation, we show that loss of either, or both, Dnmt3a or Dnmt3b, progressively impedes hematopoietic stem cell (HSC) differentiation during serial in vivo passage. Concomitantly, HSC self-renewal is immensely augmented in absence of either Dnmt3, particularly Dnmt3a. Dnmt3-KO HSCs show upregulation of HSC multipotency genes and downregulation of early differentiation factors, and the differentiated progeny of Dnmt3-KO HSCs exhibit hypomethylation and incomplete repression of HSC-specific genes. HSCs lacking Dnmt3a manifest hyper-methylation of CpG islands and hypo-methylation of genes which are highly correlated with human hematologic malignancies. These data establish that aberrant DNA methylation has direct pathologic consequences for somatic stem cell development, leading to inefficient differentiation and maintenance of a self-renewal program.

Publication Title

Dnmt3a is essential for hematopoietic stem cell differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE38200
Ikaros target genes in the mouse pre-B cell line B3
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE38110
Gene expression in mouse pre-B cells transduced with Ikaros.
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

Ikaros family DNA binding proteins are critical regulators of B cell development. To identify Ikaros-regulated genes in pre-B cells we performed gene expression studies at enhanced temporal resolution.

Publication Title

Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68427
Identification and function of Tbx4 resident fibroblasts as a major source of fibrotic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Progressive tissue fibrosis is a major cause of morbidity, and idiopathic pulmonary fibrosis (IPF) is a terminal illness characterized by unremitting matrix deposition in the lung with very limited choice of therapies. The imcomplete understanding of the mechanisms of progressive fibrosis curbs the progress in therapeutics development. Of which, the origin of fibrotic fibroblasts has been poorly defined during the pathogenesis of tissue fibrosis. Here, we fate-mapped a early embryonic transcription factor T-box gene 4 (Tbx4)-derived mesenchymal progenitors in injured adult lung and found that Tbx4+ lineage cells are the major source of myofibroblasts. The ablation of Tbx4+ cells or disruption of Tbx4 signaling attenuated lung fibrosis in bleomycin injury model in mice in vivo. Furthermore, Tbx4+ fibroblasts are more invasive and the regulation of fibroblast invasiveness by Tbx4 is through mediating hyaluronan synthase 2 (HAS2). This study identified a major mesenchymal transcription factor driving the development of fibrotic fibroblasts during lung fibrosis. Understanding the origin, signaling, and functions of these fibroblasts would prove pivotal in the development of therapeutics for patients with progressive fibrotic diseases.

Publication Title

Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33253
Transcriptional reprogramming of tumor-associated endothelial cells by disruption of TNF- signaling
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Endothelial inflammation contributes to the pathogenesis of numerous human diseases; however, the role of tumor endothelial inflammation in the growth of experimental tumors and its influence on the prognosis of human cancers is less understood. TNF-, an important mediator of tumor stromal inflammation, is known to target the tumor vasculature. In this study, we demonstrate that B16-F1 melanomas grew more rapidly in C57BL/6 wild-type (WT) mice than in syngeneic mice with germline deletions of both TNF- receptors (KO). This enhanced tumor growth was associated with increased COX2 inflammatory expression in WT tumor endothelium compared to endothelium in KO mice. We purified endothelial cells from WT and KO tumors and characterized dysregulated gene expression, which ultimately formed the basis of a 6-gene Inflammation-Related Endothelial-derived Gene (IREG) signature. This inflammatory signature expressed in WT tumor endothelial cells was trained in human cancer datasets and predicted a poor clinical outcome in breast cancer, colon cancer, lung cancer and glioma. Consistent with this observation, conditioned media from human endothelial cells treated with pro-inflammatory cytokines (TNF- and interferons) accelerated the growth of human colon and breast tumors in immune-deprived mice as compared with conditioned media from untreated endothelial cells. These findings demonstrate that activation of endothelial inflammatory pathways contributes to tumor growth and progression in diverse human cancers.

Publication Title

Tumor endothelial inflammation predicts clinical outcome in diverse human cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40151
Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: A model for active disease.
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon

Description

Genomic profiling of bleomycin- and saline-treated mice across 7 timepoints (1, 2, 7, 14, 21, 28, 35 days post treatment) was carried out in C57BL6/J mice to determine the phases of response to bleomycin treatment which correspond to onset of active pulmonary fibrosis.

Publication Title

Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE46944
Transcription Factor Foxo1 Controls Memory CD8+ T Cell Responses To Infection
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact