refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon GSE28895
Expression data from stomach of germ-free and gnotobiotic mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The aim of this study was to examine the role of indigenous lactobacilli in the physiological development of the stomach in mice using microarray analysis. In lactobacilli-associated gnotobiotic mice, an increased expression of the genes related to the muscle system development, such as nebulin and troponin, was observed. On the other hand, the expression of the gastrin gene dramatically decreased. A microarray analysis of the stomachs infected with H. pylori also showed both the up-regulation of muscle cell genes and the down-regulation of gastrin genes.

Publication Title

Role of indigenous lactobacilli in gastrin-mediated acid production in the mouse stomach.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22448
Gene expression data from wild-type and Nlrc5 knockout GM-CSF induced bone marrow dendritic cells infected with Newcastle Disease virus.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Nlrc5 is encoding a Nod-like receptor protein NLRC5/NOD27. To check the involvement of Nlrc5 in antiviral response, we examined gene expression profile in wild-type and Nlrc5 knockout GM-CSF bone marrow macrophage with using microarrays.

Publication Title

NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE36814
Role for DNA methylation in response to Gata4 activation in embryonic stem cell-derived mesoderm
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

During embryogenesis, many key transcription factors are used repeatedly, achieving different outcomes depending on cell type and developmental stage. The epigenetic modification of the genome functions as a memory of a cells developmental history, and it has been proposed that such modification shapes the cellular response to transcription factors. To investigate the role of DNA methylation in the response to transcription factor Gata4, we examined expression profiles of Dnmt3a-/-Dnmt3b-/- ES cell-derived mesoderm cells cultured for 4 days with or without Gata4 activation, as well as the wild-type counterparts, using Affymetrix microarrays.

Publication Title

DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23101
Comparative Effects of Statins on Murine Cardiac Gene Expression Profiles in Normal Mice
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

Recent clinical data suggest that the efficacy of statin treatment in patients with heart failure varies depending on the drugs administered. Therefore, the present study was undertaken to compare murine cardiac gene expression following treatment with four different statins.

Publication Title

Comparative effects of statins on murine cardiac gene expression profiles in normal mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE10627
Mll-AF9 induced changes in gene expression in various hematopoietic cells
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon

Description

The pathways by which oncogenes, such as MLL-AF9, initiate transformation and leukemia in humans and mice are incompletely defined. In a study of target cells and oncogene dosage, we found that Mll-AF9, when under endogenous regulatory control, efficiently transformed LSK (Lin- Sca1+ c-kit+) stem cells while committed granulocyte-monocyte progenitors (GMPs) were transformation-resistant and did not cause leukemia. Mll-AF9 was expressed at higher levels in hematopoietic stem (HSC) than GMP cells. Mll- AF9 gene dosage effects were directly shown in experiments where GMPs were efficiently transformed by the high dosage of Mll-AF9 resulting from retroviral transduction. Mll-AF9 up-regulated expression of 196 genes in both LSK and progenitor cells, but to higher levels in LSKs than in committed myeloid progenitors.

Publication Title

Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60905
Transcriptional hallmarks of heterogeneous neural stem cell niches of the subventricular zone.
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Throughout postnatal life in mammals, neural stem cells (NSCs) are located in the subventricular zone (SVZ) of the lateral ventricles. The greatest diversity of neuronal and glial lineages they generate occurs during early postnatal life in a region-specific manner. In order to evaluate potential heterogeneity in the NSC pool, we microdissected the dorsal and lateral SVZ at different postnatal ages and isolated NSCs and their immediate progeny based on their expression of Hes5-EGFP/Prominin1 and Ascl1-EGFP, respectively. Whole genome comparative transcriptome analysis revealed transcriptional regulators as major hallmarks that sustain postnatal SVZ regionalization. Manipulation of single genes encoding for locally enriched transcription factors influenced NSC specification indicating that the fate of regionalized postnatal SVZ NSCs can be readily modified . These findings reveal functional heterogeneity of NSCs in the postnatal SVZ and provide targets to recruit region-specific lineages in regenerative contexts.

Publication Title

Transcriptional Hallmarks of Heterogeneous Neural Stem Cell Niches of the Subventricular Zone.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30268
Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE30176
Retinoic acid (RA) induction time-course to profile gene expression during mES cell differentiation.
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Murine ES cell gene expression before RA induction are used to compare gene expression for time-points of 2, 4, 6hrs post-induction.

Publication Title

Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14101
Genes regulated by Meis1 in murine Mll-AF9 leukemia cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Leukemias with MLL-rearrangements are characterized by high expression of the homeo box gene MEIS1. In these studies, we knocked down Meis1 expression by shRNA lentivirus transduction in murine Mll-AF9 leukemia cells. Meis1 knockdown resulted in decreased proliferation and survival of murine Mll-AF9 leukemia cells. We also observed reduced clonogenic capacity and increased monocytic differentiation. The establishment of leukemia in transplant recipients was significantly delayed by Meis1 knockdown. Gene expression profiling of cells transduced with Meis1 shRNA showed reduced expression of genes associated with cell cycle entry and progression. shRNA mediated knockdown of MEIS1 in human MLL-fusion gene leukemia cell lines resulted in reduced cell growth. These results show that MEIS1 expression is important for MLL-rearranged leukemias and suggest that MEIS1 promotes cell cycle entry. Targeting MEIS1 may have therapeutic potential for treating leukemias expressing this transcription factor.

Publication Title

A role for MEIS1 in MLL-fusion gene leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11186
Expression profiling of mouse dorsal skin during hair follicle cycling
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon

Description

Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.

Publication Title

Circadian clock genes contribute to the regulation of hair follicle cycling.

Sample Metadata Fields

Sex

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact