refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE59930
Peroxisomes and mitochondria are dysfunctional in obese diabetic (db/db) mice with fatty liver
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Major causes of lipid accumulation in liver are increased import, synthesis or decreased catabolism of fatty acids. The latter is caused by dysfunction of cellular organelle controlling energy homeostasis, i.e. mitochondria. However, peroxisomes appear to be an important organelle in lipid metabolism of hepatocytes, but little is known about their role in the development of non-alcoholic fatty liver disease (NAFLD). To investigate the role of peroxisomes next to mitochondria in excessive hepatic lipid accumulation we used the leptin resistant db/db mice on C57BLKS background, a mouse model that develops hyperphagia induced diabetes with obesity and NAFLD.

Publication Title

Peroxisomes compensate hepatic lipid overflow in mice with fatty liver.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE13908
Gene expression analysis in intestinal epithelial cells of germ-free versus wildtype mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression was analyzed in intestinal epithelial cells of germ-free and wildtype mice.

Publication Title

A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13155
Comparison of mouse placental labyrinth and human villus tree
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human placenta and mouse placenta show structural similarities but there has been no systematic attempt to assess their molecular similarities or differences. We built a comprehensive database of protein and microarray data for the highly vascular exchange region micro-dissected from the human and mouse placenta near-term. Abnormalities in this region are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ~5% of all pregnancies.

Publication Title

Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15969
Changes in gene expression of hMSCs and NOD/scid mouse lung after IV infusion of hMSCs
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Quantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (IV) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 X 106 hMSCs were IV infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of about 24 hr but < 1,000 cells appeared in 6 other tissues. The hMSCs in lung up-regulated expression of multiple genes with a large increase in the anti-inflammatory protein TSG-6. After myocardial infarction, IV hMSCs but not hMSCs transduced with TSG-6 siRNA decreased inflammatory responses, reduced infarct size, and improved cardiac function. IV administration of recombinant TSG-6 also reduced inflammatory responses and reduced infarct size. The results suggest improvements in animal models and patients after IV infusions of MSCs are at least in part explained by activation of MSCs to secrete TSG-6.

Publication Title

Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE64750
Lung expression data from highly pathogenic H5N1 virus infected and uninfected mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Susceptible and Resistant mouse strain, e.g. DBA/2J and C57BL/6J respectively, were inoculated with a highly pathogenic H5N1 influenza A virus (A/Hong Kong/213/2003) for 72 hours.

Publication Title

Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE28408
Expression data from Ly6G+ and Ly6G- dendritic cells (DC)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

To investigate the functional properties of Ly6G+ DC, we employed GeneChip analysis to compare the gene expression profiles between Ly6G+ DC and Ly6C- DC.

Publication Title

Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact