refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon GSE10477
Gene expression of mouse ES cell, conditional Pou5f1 KO
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2)1-5. PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC13-7. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog9. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38650
Histone H2A mono-ubiquitination is a crucial step to mediate PRC1 dependent repression of developmental genes to maintain ES cell identity.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3) respectively. Compared to H3K27me3, localization and role of H2AK119ub1 is not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation.

Publication Title

Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE38224
Expression data from Ring1A(-/-);Ring1B(fl/fl);R26::CreERT2 ES cells expressing either of mock, WT or mutant Ring1B construct before or after OHT treatment
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to investigate the restoration of repression of PRC1 target gene expression in Ring1A/B-dKO ES cells stably expressing either of mock, WT or mutant Ring1B construct.

Publication Title

Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE10555
Comparision of expression profile between wild-type and Slc39a13 knockout osteoblasts
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

In order to explore molecules whose expression is controlled by Slc39a13, we investigated gene expression profiling of primary osteoblast isolated from wild-type and Slc39a13 knockout mice.

Publication Title

The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10026
High resolution gene expression profiling for simultaneous analysis of RNA synthesis, abundance and decay
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved principles of mammalian transcriptional regulation revealed by RNA half-life.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10011
Expression data from NIH-3T3 cells used for half-life determination
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

Data from tc-, nt- and p-RNA as well as 1 and 2h of actinomycin-D treatment (5g/ml) of NIH-3T3 cells used to determine half-lives. RNA was labeled for 15, 30 or 60 minutes with 4-thiouridine. After preparation of tc-RNA, thiol-labeled RNA was biotinylated using biot-HPDP and subsequently tc-RNA was separated into nt- and p-RNA using streptavidin coated magnetic beads. All three fractions were used for microarray analysis. For actinomycin-D experiments only tc-RNA was used prepared from cell before and 1 an 2h after addition of act-D.

Publication Title

Conserved principles of mammalian transcriptional regulation revealed by RNA half-life.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90673
Expression profiles of retinal neuronal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Satb1 Regulates Contactin 5 to Pattern Dendrites of a Mammalian Retinal Ganglion Cell.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10175
Comparison of gene expression in the epidermis of Tcfap2c mutant and control skin at embryonic day 16.5
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The development of the epidermis, a stratified squamous epithelium, is dependent on the regulated differentiation of keratinocytes. Differentiation begins with the initiation of stratification, a process tightly controlled through proper gene expression. AP-2 is expressed in skin and previous research suggested a pathway where p63 gene induction results in increased expression of AP-2 which in turn is responsible for induction of K14. This study uses a conditional gene ablation model to further explore the role of AP-2 in skin development. Mice deficient for AP-2 exhibited delayed expression of p63, K14, and K1, key genes required for development and differentiation of the epidermis. In addition, microarray analysis of E16.5 skin revealed delayed expression of additional late epidermal differentiation genes: filaggrin, repetin and secreted Ly6/Plaur domain containing 1, in mutant mice. The genetic delay in skin development was further confirmed by a functional delay in the formation of an epidermal barrier. These results document an important role for AP-2 in skin development, and reveal the existence of regulatory factors that can compensate for AP-2 in its absence.

Publication Title

Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90648
A gene expression database for retinal neuron subtypes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The goal of this experiment was to define gene expression patterns of two mouse retinal ganglion cell subsets, labeled by expression of fluorescent proteins in Hb9-GFP and Drd4-GFP mice, all retinal ganglion cells labeled by anti-Thy1 antibody staining.

Publication Title

Satb1 Regulates Contactin 5 to Pattern Dendrites of a Mammalian Retinal Ganglion Cell.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13908
Gene expression analysis in intestinal epithelial cells of germ-free versus wildtype mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression was analyzed in intestinal epithelial cells of germ-free and wildtype mice.

Publication Title

A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact