refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 30 results
Sort by

Filters

Technology

Platform

accession-icon GSE38123
Expression Profiles of PMH treated with 7M of the genotoxic compound cisplatin
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The transcriptomic changes induced in primary mouse hepatocytes (C57BL/6 ) by 7M of cisplatin after treatment for 24 and 48h

Publication Title

Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE72088
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE72081
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity (mRNA)
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon

Description

The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.

Publication Title

Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE57132
Evaluating mRNA and microRNA profiles reveals discriminative and compound-specific responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE57129
Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon

Description

The study investigated differential gene expression in primary mouse hepatocyte mRNA following 24 and 48 hours of exposure to aflatoxin B1, cisplatin, benzo(a)pyrene, 2,3,7,8-tetrachloordibenzo-p-dioxine, cyclosporin A or Wy-14,643 or their responsive solvent. Three (four for Wy-14,643) biological replicates per compound/solvent.

Publication Title

Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE55883
Expression Profiles of Primary Mouse Hepatocytes treated with Cyclosporin A and solvent control
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55881
Expression Profiles of Primary Mouse Hepatocytes treated with Cyclosporin A and solvent control [RNA]
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

The transcriptomics changes induced in Primary Mouse Hepatocytes by Cyclosporin A after treatment for 24h and 48h

Publication Title

Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44260
Murine germinal center and naive B cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Gene expressions of murine germinal center and naive B cells on Affymetrix platform

Publication Title

Multiple transcription factor binding sites predict AID targeting in non-Ig genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26355
Expression data from early and late born Atoh1 lineages within the E14.5 rhombomere 1 and isthmus
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Following neural tube closure at around E9.5, the rhombic lip within the rhombomere 1/isthmus region ("upper rhombic lip") produces a sequence of neuronal lineages that populate the brainstem and cerebellum. The transcription factor Atoh1 (Math1) is required for this specialized neurogenesis, although the genetic programs that delineate the temporal cell fate changes downstream of Atoh1 are not well characterized. We examined the gene expresion changes that take place within Atoh1 lineages

Publication Title

Genes expressed in Atoh1 neuronal lineages arising from the r1/isthmus rhombic lip.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43381
Expression profiling across mouse epithelial tissues
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon

Description

To characterize genes, pathways, and transcriptional regulators enriched in the mouse cornea, we compared the expression profiles of whole mouse cornea, bladder, esophagus, lung, proximal small intestine, skin, stomach, and trachea.

Publication Title

The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact