refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE44260
Murine germinal center and naive B cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Gene expressions of murine germinal center and naive B cells on Affymetrix platform

Publication Title

Multiple transcription factor binding sites predict AID targeting in non-Ig genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61089
Mouse and rat cells and tissues
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE61081
Dilution and amplification control study
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Mouse adult female brains cortex (C57BL/6, Charles River Laboratories, Inc.) was isolated and stored immediately at -80C. Subsequently, the mRNA (15g) was isolated using TRIzol Reagent and MicroFastTrack 2.0 Kit (Invitrogen). A Sample of 5g was assessed on Affymetrix Mouse 430.2 array. Aliquots from the leftovers of the same cortical mRNA were diluted to single-cell RNA levels (0.1, 1, and 10 pg) and independently aRNA amplified for a total of 2 and 4 rounds and assessed on Affymetrix Mouse 430.2 arrays.

Publication Title

Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23014
Comprehensive profiling of the early lung immune responses in the mouse model of tuberculosis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

The lung host immune responses following M.tuberculosis infection in the mouse model of tuberculosis were assayed by studying the gene expression profiles at day 0, day 12, 15 and 21 post infection

Publication Title

Profiling early lung immune responses in the mouse model of tuberculosis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE5338
In vivo function of NR2E3 in establishing photoreceptor identity during mammalian retinal development
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Rod and cone photoreceptors in mammalian retina are generated from common pool(s) of neuroepithelial progenitors. NRL, CRX and NR2E3 are key transcriptional regulators that control photoreceptor differentiation. Mutations in NR2E3, a rod-specific orphan nuclear receptor, lead to loss of rods, increased density of S-cones, and supernormal S-cone-mediated vision in humans. To better understand its in vivo function, NR2E3 was expressed ectopically in the Nrl-/- retina, where post-mitotic precursors fated to be rods develop into functional S-cones similar to the human NR2E3 disease. Expression of NR2E3 in the Nrl-/- retina completely suppressed cone differentiation and resulted in morphologically rod-like photoreceptors, which were not functional. Gene profiling of FACS-purified photoreceptors confirmed the role of NR2E3 as a strong suppressor of cone genes and an activator of a subset of rod genes (including rhodopsin) in vivo. Ectopic expression of NR2E3 in cone precursors and differentiating S-cones of wild type retina also generates rod-like cells. The dual regulatory function of NR2E3 is not dependent upon the presence of NRL and/or CRX, but on the timing and level of its expression. Our studies reveal a critical role of NR2E3 in establishing functional specificity of post-mitotic photoreceptor precursors during retinal neurogenesis.

Publication Title

In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE6285
Expression data from brains of mice fed four different diets
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Beyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.

Publication Title

Human and chimpanzee gene expression differences replicated in mice fed different diets.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE34963
The Polycomb Repressive Complex 2 Is Required For MLL-AF9 Leukemia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE34959
Expression profiling of primary wild type (WT), Ezh2-null and Eed-null murine MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

We evaluated gene expression changes in murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of homozygous conditional alleles for Ezh2 or Eed, both of which are components of the Polycomb Repressive Complex2.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE34961
Expression profiling of secondary wild type (WT) and Ezh2-null murine MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

We evaluated gene expression changes in secondary recipient murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of a homozygous conditional allele for Ezh2, a component of the Polycomb Repressive Complex2.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE14980
Consequences of GATA1 expression in Gata1- G1ME Murine Megakaryocyte/Erythrocyte Progenitor Cell Line
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

G1ME cells are GATA1-deficient murine bipotential megakaryocyte/erythrocyte progenitor cells derived from Gata1-negative murine ES cells. In order to assess the impact of GATA1 on gene regulation and cell differentiation, an expression construct was used to transiently produce high levels of GATA1. Cells transduced with this construct or a vector control were harvested at 18 and 42 hours, and gene expression was analyzed using Affymetrix MOE430 version 2 arrays.

Publication Title

Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact