refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE8678
Gene expression data from sorted IL-7Rhi/lo effector CD8 T cells on day 6/7 after LCMV armstrong infection
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

At the peak of the CD8 T cell response to acture viral and bacterial infections, expression of the Interleukin-7 Receptor (IL-7R) marks Memory Precursor Effector CD8 T Cells (MPECs) from other Short-Lived Effector CD8 T cells (SLECs), which are IL-7Rlo. This study was designed to determine the gene expression differences between these two subsets of effector CD8 T cells.

Publication Title

Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE30318
Expression data from murine Fancc-deficient hematopoietic stem and progenitor cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We used gene expression microarrays to identify genes whose expression was influenced differently by TNFa in Fancc-deficient mice compared to wild type (WT) mice. To identify genes whose expression was directly or indirectly influenced by Fancc, we looked in particular for genes either suppressed or induced by TNF in WT cells that were not affected by TNF in Fancc-deficient cells.

Publication Title

FANCL ubiquitinates β-catenin and enhances its nuclear function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20735
Expression data from effector CD4 T cells isolated from MRL/Faslpr mice.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

MRL/Faslpr mice is a lupus prone strain that exhibits lupus disease features at 12-16 weeks of age, including high-titer circulating anti-DNA antibodies, splenomegaly, lymphadnopathy, skin lesions, and IgG deposits in the kidney. At 16-24 weeks of age, CD4+ B220- CD44+ T cells were sorted into three populations based on the expression of two cell surface molecules, CD62L and PSGL1. CD62Lhi PSGL1hi, CD62Llo PSGL1hi, and CD62Llo PSGL1lo CD4+ T cells were isolated directly ex vivo. There was no treatment given to the animals. Naive (CD62Lhi CD44lo) CD4+ B220- T cells were isolated from young 6-8 week old female mice for comparison.

Publication Title

In vivo regulation of Bcl6 and T follicular helper cell development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10744
Copy number variation and gene expression in the mouse
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon

Description

Copy number variation (CNV) of DNA segments has recently been identified as a major source of genetic diversity, but a more comprehensive understanding of the extent and phenotypic effect of this type of variation is only beginning to emerge. In this study we generated genome-wide expression data from 6 mouse tissues to investigate how CNVs influence gene expression.

Publication Title

Segmental copy number variation shapes tissue transcriptomes.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact