refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 27 results
Sort by

Filters

Technology

Platform

accession-icon GSE10273
Convergent molecular pathways that induce immunoglobulin light-chain recombination
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Productive rearrangement of the immunoglobulin heavy chain locus triggers a major developmental checkpoint that promotes limited clonal expansion of pre-B cells, culminating in cell cycle arrest and rearrangement of the kappa () or lambda () light-chain loci. B lineage cells lacking the related transcription factors IRF-4 and IRF-8 undergo a developmental arrest at the cycling pre-B cell stage and are blocked for light-chain recombination. Using Irf-4,8-/- pre-B cells we demonstrate that two pathways converge to synergistically drive light-chain rearrangement, a process that is not simply activated by cell cycle exit. One pathway is directly dependent on IRF-4, whose expression is elevated by pre-BCR signaling. IRF-4 targets the 3 and enhancers to increase locus accessibility and positions a kappa allele away from pericentromeric heterochromatin. The other pathway is triggered by attenuation of IL-7 signaling and results in activation of the intronic enhancer via binding of the transcription factor, E2A. Intriguingly, IRF-4 regulates the expression of CXCR4 and promotes the migration of pre-B cells in response to the chemokine CXCL12. We propose that IRF-4 coordinates the two pathways regulating light-chain recombination by positioning pre-B cells away from IL-7 expressing stromal cells.

Publication Title

Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15315
ERK1/2 in Ovarian Granulosa Cells are Essential for Female Fertility
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

A surge of luteinizing hormone (LH) from the pituitary gland triggers ovulation, oocyte maturation, and luteinization for successful reproduction in mammals. Since the signaling molecules RAS and ERK1/2 are activated by a LH surge in granulosa cells of preovulatory follicles, we disrupted Erk1/2 in mouse granulosa cells and provide in vivo evidence that these kinases are necessary for LH-induced oocyte resumption of meiosis, ovulation, and luteinization. In addition, biochemical analyses and selected disruption of the Cebpb gene in granulosa cells demonstrate that C/EBP is a critical downstream mediator of ERK1/2 activation. These mouse models provide in vivo systems in which to define the context specific and molecular mechanisms by which granulosa cells respond to LH and these mechanisms are relevant to the regulation of human fertility and infertility.

Publication Title

MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE30834
Influence of C/EBP 3'UTR on RasV12 induced gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

C/EBPb is an auto-repressed protein that becomes posttranslationally activated by Ras-MEK-ERK signalling. C/EBPb is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPb activation by H-RasV12 is suppressed in immortalized/transformed cells, but not in primary cells, by its 30 untranslated region (30UTR). 30UTR sequences inhibited Ras-induced cytostatic activity of C/EBPb, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 30UTR suppressed induction of senescence-associated C/EBPb target genes, while promoting expression of genes linked to cancers and TGFb signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 30UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPb translation controls de-repression by Ras signalling. Notably, 30UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPb activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPb activity and suppress its anti-oncogenic functions.

Publication Title

3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25100
Expression data from CD19-positive splenic B cells isolated from 1-month old ID4+/-TCL1-tg and ID4+/+TCL1-tg mice
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The function of ID4 in CLL development was studied in vivo using TCL1 transgenic mouse model that develop leukemia similar to human CLL. TCL1 mice with ID4 single knockout gene have accelerated CLL progression.

Publication Title

Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6078
PTEN-deficient intestinal stem cells initiate intestinal polyposis
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts. Crypts contain intestinal stem cells (ISCs). Thus intestinal polyposis provides an ideal condition for studying stem cell involvement in polyp/tumor formation. Using a conditional knock-out mouse model, we found that the tumor suppressor Phosphatase of Tension homolog (PTEN) governs the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN mutants, excess ISCs initiate de-novo crypt formation and crypt fission, recapitulating crypt production in fetal/neonatal intestine. Microarray studies were used to profile the changes in gene expression that occurred when PTEN was knocked out in the intestine.

Publication Title

PTEN-deficient intestinal stem cells initiate intestinal polyposis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27901
Transactivation-deficient p53 Mutants in Ras-induced Cellular Senescence
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

As a critical cellular stress sensor, p53 mediates a variety of defensive processes including cell-cycle arrest, apoptosis, and senescence to prevent propagation of hyperproliferative cells or cells with a damaged genome, hence the formation of neoplasia. Transactivation of downstream genes plays an important while sometimes controversial role in regulating these cellular processes. To evaluate the dependence on transcriptional activation in p53s activities, we generated genetically-modified mouse lines carrying mutations in the transactivation domains (TADs) of p53. These transactivatio-deficient mutants serve as unique reagents to probe the dependence on robust transactivation in p53-mediated cellular functions, as well as the underneath mechanisms. To identify genes differentially regulated by these p53 mutants, we performed gene expression profiling analysis on mouse embryonic fibroblast cells (MEFs) from these mice in the context of oncogenic Ras-induced premature cellular senescence.

Publication Title

Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19668
Genetic Determinants for Susceptibility to Staphylococcus aureus Infection in A/J and C57BL/6J
  • organism-icon Mus musculus
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon

Description

Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that factors on chromosomes (chr) 8, 11, and 18 are responsible for susceptibility to S. aureus sepsis in A/J mice. F1 mice from C57BL/6J X CSS8 cross (C8A) and C57BL/6J X CSS18 (C18A) were also susceptible to S. aureus (median survival < 48 h), whereas F1 mice from C57BL/6J X CSS11 cross (C11A) were resistant (median survival > 120 h) to S. aureus. Bacterial loads in the kidney were consistent with F1 median survivals, with higher bacterial counts in susceptible mice. No sexlinked associations with susceptibility were noted in F1 intercrosses. Using whole genome transcription profiling, we identified a total of 192 genes on chromosomes 8, 11, and 18 which are differentially expressed between A/J and C57BL/6J in the setting of S. aureus infection. Of these, 28 genes had Gene Ontology annotations indicating a potential immune response function. These 28 genes are associated with susceptibility to S. aureus in A/J mice, and are potential determinants of susceptibility to S. aureus infection in humans.

Publication Title

Two genes on A/J chromosome 18 are associated with susceptibility to Staphylococcus aureus infection by combined microarray and QTL analyses.

Sample Metadata Fields

Time

View Samples
accession-icon GSE42548
TH-MYCN Mice with Caspase-8 Deficiency Develop Advanced Neuroblastoma with Bone Marrow Metastasis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Neuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due in part, to the lack of animal models harboring bone marrow disease. The widely employed transgenic model, the TH-MYCN mouse, exhibits limited metastasis to this site. Here we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates two frequent alterations in metastatic neuroblasoma, over-expression of MYCN and loss of caspase-8 expression. In this model, the mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a TH-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone TH-MYCN mouse. While over-expression of MYCN by itself rarely caused bone marrow metastasis (5% average incidence), combining MYCN overexpression and caspase-8 deletion significantly increased bone marrow metastasis (37% average incidence). Loss of caspase-8 expression did not alter the site, incidence, or latency of the primary tumors. However, secondary tumors were detected in the bone marrow of these mice as early as week 9-10. The mouse model described in this work is a valuable tool to enhance our understanding of metastatic neuroblastoma and treatment options and underscores the role of caspase-8 in neuroblastoma progression.

Publication Title

Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14024
Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell types and has been implicated in multiple aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that selective inhibition of the pathway might yield clinically effective therapeutics. Here we describe A-928605, a novel small molecule inhibitor of the receptor tyrosine kinase responsible for IGF signal transduction. This small molecule is able to abrogate activation of the pathway as shown by effects on the target and downstream effectors and is shown to be effective at inhibiting the proliferation of an oncogene addicted tumor model cell line (CD8-IGF1R 3T3) both in vitro and in vivo.

Publication Title

Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21583
Effects of ACE2 on BMPR2 mutation-mediated defects in gene expression
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

BMPR2 mutation causes pulmonary arterial hypertension (PAH); ACE2 treatment can resolve established BMPR2-mediated PAH. The purpose of this study was to uncover the molecular mechanism behind this.

Publication Title

Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact