refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14 results
Sort by

Filters

Technology

Platform

accession-icon GSE16801
Comparative gene expression analysis of 2 subpopulations of dermal papilla cells.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Different types of hair follicles can be found in the skin of mice. It is believed that the signals that control hair follicle differentiation arise from cells in a structure called the dermal papilla. Understanding the nature of those signals is of interest for the biology of the normal tissue.

Publication Title

Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38837
Zbtb20-mediated repression of genes in developing CA1 pyramidal neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The transcriptional repressor Zbtb20 is essential for specification of hippocampal CA1 pyramidal neurons. Moreover, ectopic expression of Zbtb20 is sufficient to transform subicular and retrosplenial areas of D6/Zbtb20S mice to CA1. We used microarrays to identify genes that are repressed by Zbtb20 in developing CA1 pyramidal neurons in the CA1-transformed cortex of D6/Zbtb20S mice.

Publication Title

Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24789
Expression data from mouse ovarian surface epithelium cells at different stages of malignancy
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Ovarian cancer is one of the most deadly cancers accounting for only 3% of diagnosed cancers, but is the fifth leading cause of cancer deaths among woman; however, the progression of ovarian cancer is poorly understood. To study and further understand the early events that lead to epithelial derived ovarian cancer, we previously developed a cell model of progressive ovarian cancer. Mouse ovarian surface epithelial (MOSE) cells have undergone spontaneous transformation in cell culture and represent pre-neoplastic, non-tumorigenic to an aggressive malignant phenotype.

Publication Title

Changes in gene expression and cellular architecture in an ovarian cancer progression model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6514
Gene expression in the mouse brain during spontaneous sleep and prolonged wakefulness
  • organism-icon Mus musculus
  • sample-icon 86 Downloadable Samples
  • Technology Badge Icon

Description

These studies address temporal changes in gene expression during spontaneous sleep and extended wakefulness in the mouse cerebral cortex, a neuronal target for processes that control sleep; and the hypothalamus, an important site of sleep regulatory processes. We determined these changes by comparing expression in sleeping animals sacrificed at different times during the lights on period, to that in animals sleep deprived and sacrificed at the same diurnal time.

Publication Title

Macromolecule biosynthesis: a key function of sleep.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE29584
Expression Data from Toxoplasma gondii Infected Murine Macrophages and Dendritic Cells
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

We wanted to determine how type II versus type III Toxoplasma infection affect host gene expression

Publication Title

Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE18172
T.F. Glis3: a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Glis3 mutant mice (Glis3zf/zf) die within the first week after birth due to overt diabetes, evidenced by hyperglycemia and hypoinsulinemia. Histopathological analysis showed that Glis3zf/zf mice develop a pancreatic phenotype with a dramatic loss of beta- (insulin) and delta- (somatostatin) cells contrasting a smaller relative loss of alpha- (glucagon), PP- (pancreatic polypeptide), and epsilon- (ghrelin) cells. Glis3zf/zf mice develop ductal cysts with decreased number of primary cilia, while the acini are not significantly affected. Gene expression profiling by microarray analysis demonstrated that the expression of terminal hormonal genes and several transcription factors important in endocrine development were significantly deregulated in Glis3zf/zf mice. During pancreatic development, Glis3 mRNA expression is induced during the secondary transition, a stage of cell lineage specification and extensive patterning. Changes in pancreatic development of Glis3zf/zf mice are noted during and after this stage. The population of pancreatic progenitors appears not to be greatly affected in Glis3zf/zf mice; however, the number of neurogenin 3 (Ngn3) positive, endocrine progenitors is significantly reduced. Our study indicates that Glis3 plays a key role in cell lineage specification, particularly the development of mature pancreatic beta-cells. In addition, we identified evidence that Glis3 regulates insulin gene expression through two Glis-binding sites in its proximal promoter indicating that Glis3 is a regulator of insulin gene expression.

Publication Title

Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72088
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE72081
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity (mRNA)
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon

Description

The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.

Publication Title

Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE57132
Evaluating mRNA and microRNA profiles reveals discriminative and compound-specific responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE57129
Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon

Description

The study investigated differential gene expression in primary mouse hepatocyte mRNA following 24 and 48 hours of exposure to aflatoxin B1, cisplatin, benzo(a)pyrene, 2,3,7,8-tetrachloordibenzo-p-dioxine, cyclosporin A or Wy-14,643 or their responsive solvent. Three (four for Wy-14,643) biological replicates per compound/solvent.

Publication Title

Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes.

Sample Metadata Fields

Specimen part, Compound

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact