refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE54242
Expression data from differentiating murine embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

Various substances have been reported to enhance the cardiac differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Ascorbic Acid had a cardiogenic effect in mESC CGR8 cell line. Transcriptome of AA-treated CGR8 ESCs did not reveal any significant changes in gene expression as compared to untreated cells.

Publication Title

Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23308
Effect of Mineralocorticoid Receptor deletion on glucocorticoid signalling in the macropahge
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Inappropriate excess of the steroid hormone aldosterone, which is a mineralocorticoid receptor (MR) agonist, is associated with increased inflammation and risk of cardiovascular disease. MR antagonists are cardioprotective and antiinflammatory in vivo, and evidence suggests that they mediate these effects in part by aldosterone- independent mechanisms.

Publication Title

Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE54044
Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic -cell function (Expression data from islets of control and Insm1 conditional deleted adult pancreatic islets)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

The zinc finger factor Insm1 is known to regulate differentiation of pancreatic cells during development, Here we show that Insm1 is essential for the maintenance of functionally mature pancreatic cells in mice.

Publication Title

Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18348
Induction of intestinal Th17 cells by segmented filamentous bacteria
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. The process by which the commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation, anti-microbial defenses, and tissue repair, and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Control of Th17 cell differentiation by SFB may thus establish a balance between optimal host defense preparedness and potentially damaging T cell responses. Manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.

Publication Title

Induction of intestinal Th17 cells by segmented filamentous bacteria.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106581
Cancer-associated rs6983267 SNP and its accompanying long non-coding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

The cancer-risk associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long non-coding RNA CCAT2 in the highly amplified 8q24.21 region has been implicated in cancer predisposition, though causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by downregulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel disease-specific RNA mutation (named DNA-to-RNA allelic imbalance, DRAI) at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.

Publication Title

Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact