refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon GSE18446
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.

Publication Title

BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12505
Plasmacytoid dendritic cells (pDCs) from E2-2 heterozygous mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.

Publication Title

Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31792
Distinct and Overlapping Gene Regulatory Networks in BMP- and HDAC-Controlled Cell Fate Determination in the Embryonic Forebrain
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

Both bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and trichostatin A (TSA)-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis.

Publication Title

Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE25166
Subcellular expression profiling of the growth cones of retinal ganglion cells (RGC)
  • organism-icon Xenopus laevis, Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Cue-directed axon guidance depends partly on local translation in growth cones. Many mRNA transcripts are known to reside in developing axons yet little is known about their subcellular distribution or, specifically, which transcripts are in growth cones.

Publication Title

Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36530
Expression data for program activation by IR-induced DNA breaks in G1 phase Murine PreB cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The objective of this set of samples is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by ionizing radiation in wild-type murine pre-B cells. The data generated in this project will be compared to the data generated in GSE9024, in which genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells were examined. In order to understand the differences between the physiologic and genotoxic responses to DSB DNA damage, we need to compare cells that are all in the same compartment of the cell cycle. We are therefore examining the response to IR-induced damage in cells that are arrested in G1, which would correspond to our previous study of G1 arrested cells with Rag-induced breaks. This will illuminate the difference directly, allowing us to better understand the signaling responses to the different types of DNA damage.

Publication Title

DNA damage activates a complex transcriptional response in murine lymphocytes that includes both physiological and cancer-predisposition programs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8836
CLL in Em-TCL1 mice provides a biologically relevant model to unravel and reverse immune deficiency in human cancer.
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon

Description

Immune deficiency is common in cancer, but the biological basis for this and ways to reverse it remains elusive. Here we present a mouse model of B cell chronic lymphocytic leukemia (CLL) that recapitulates changes in the non-malignant circulating T cells seen in patients with this illness.1 To validate this model, we examined changes in T cell gene expression, protein expression and function in Em-TCL1 transgenic mice as they developed CLL 2,3 and demonstrate that development of CLL in these transgenic mice is associated with changes in impaired T cell function and in gene expression in CD4 and CD8 T cells similar to those observed in patients with this disease. Infusion of CLL cells into non-leukemia bearing Em-TCL1 mice rapidly induces these changes, demonstrating a causal relationship between leukemia and the induction of T cell changes. This model allows dissection of the molecular changes induced in CD4 and CD8 T cells by interaction with leukemia cells and further supports the concept that cancer results in complex abnormalities in the immune microenvironment.

Publication Title

E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30626
Candidate pathways for promoting differentiation and quiescence of oligodendrocyte progenitor-like cells in glioblastoma
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon

Description

The mature CNS contains PDGFRA+ oligodendrocyte progenitor cells (OPC) which may remain quiescent, proliferate, or differentiate into oligodendrocytes. In human gliomas, rapidly proliferating Olig2+ cells resembling OPCs are frequently observed. We sought to identify, in vivo, candidate pathways uniquely required for OPC differentiation or quiescence. Using the bacTRAP methodology, we generated and analyzed mouse lines for translational profiling the major cells types (including OPCs), in the normal mouse brain. We then profiled oligodendoglial (Olig2+) cells from a mouse model of Pdgf-driven glioma. This analysis confirmed that Olig2+ tumor cells are most similar to OPCs, yet, it identified differences in key progenitor genes - candidates for promotion of differentiation or quiescence.

Publication Title

Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30016
Comparison of polysomal profiles of murine adult normal, tumor, and recruited olig2 cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Comparison of polysomal profiles of murine adult olig2 cortical progenitors, murine tumor olig2 cells derived from hPDGF-B-driven glioblastomas, and murine olig2 proliferative recruited glioma cells contributing to the tumor mass but not derived from the cell of origin

Publication Title

Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64750
Lung expression data from highly pathogenic H5N1 virus infected and uninfected mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Susceptible and Resistant mouse strain, e.g. DBA/2J and C57BL/6J respectively, were inoculated with a highly pathogenic H5N1 influenza A virus (A/Hong Kong/213/2003) for 72 hours.

Publication Title

Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE87557
Role of annexin A2 in muscle repair
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Repair of injured muscle involves repair of injured myofibers through the involvement of dysferlin and its interacting partners, including annexin. Studies with mice and patients have established that dysferlin deficit leads to chronic inflammation and adipogenic replacement of the diseased muscle. However, longitudinal analysis of annexin deficit on muscle pathology and function is lacking. Here we show that unlike annexin A1, but similar to dysferlin, lack of annexin A2 (AnxA2) causes poor myofiber repair and progressive weakening with age. However, unlike dysferlin-deficient muscle, AnxA2-deficient muscles do not exhibit chronic inflammation or adipogenic replacement. Deletion of AnxA2 in dysferlin deficient mice reduces inflammation, adipogenic replacement, and loss in muscle function caused by dysferlin deficit. These results show that: a) AnxA2 facilitates myofiber repair, b) chronic inflammation and adipogenic replacement of dysferlinopathic muscle requires AnxA2, and c) inhibiting AnxA2-mediated inflammation is a novel therapeutic avenue for dysferlinopathy.

Publication Title

Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle.

Sample Metadata Fields

Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact