refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon SRP074847
mRNAs Establish and Maintain Uniform Cellular Phenotypes during the Architecture of Complex Tissues
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzer

Description

Proper functioning of tissues requires cells to behave in uniform, well-organized ways. Conversely, many diseases involve increased cellular heterogeneity due to genetic and epigenetic alterations. Defining the mechanisms that counteract phenotypic variability is therefore critical to understand how tissues sustain homeostasis. Here, we carried out a single-cell resolution screen of zebrafish embryonic blood vessels upon mutagenesis of single microRNA (miRNA) genes and multi-gene miRNA families. We found that miRNA mutants exhibit a profound increase in cellular phenotypic variability of specific vascular traits. Genome-wide analysis of endothelial miRNA target genes identified antagonistic regulatory nodes of vascular growth and morphogenesis signaling that allow variable cell behaviors when derepressed. Remarkably, lack of such miRNA activity greatly sensitized the vascular system to microenvironmental changes induced by pharmacological stress. We uncover a previously unrecognized role of miRNAs as a widespread protective mechanism that limits variability in cellular phenotypes. This discovery marks an important advance in our comprehension of how miRNAs function in the physiology of higher organisms. Overall design: Analysis of differential genes expression in Zebrafish endothelial cells for 4 different developmental stages

Publication Title

MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25140
Prostate specific Pten deletion, Pten-Smad4 deletion, and Pten-p53 deletion
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global gene expression and identified differentially expressed gene list between wild-type anterior prostates and Ptenpc-/- anterior prostates, Ptenpc-/-Smad4pc-/- and Ptenpc-/- anterior prostates, Ptenpc-/-p53pc-/- and Ptenpc-/- anterior prostates at 15 weeks of age.

Publication Title

SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE29962
Nutrient-dependent growth of NIH3T3 and NIH3T3 K-ras cell lines.
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon

Description

Expression profiling of normal NIH3T3 and transformed NIH3T3 K-ras cell lines grown for 72 hours in optimal glucose availability (25 mM glucose) or low glucose availability (1 mM). Low glucose induces apoptosis in transformed cells as compared to normal ones.

Publication Title

Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE5671
Cardiac differentiation of embryonic stem cells recapitulates embryonic cardiac development.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Mouse embryonic stem cells can differentiate in vitro into spontaneously contracting cardiomyocytes. The main objective of this study was to investigate cardiogenesis in cultures of differentiating embryonic stem cells (ESCs) and to determine how closely it mimics in vivo cardiac development. We identified and isolated a population of cardiac progenitor cells (CPCs) through the use of a reporter DNA construct that allowed the expression of a selectable marker under the control of the Nkx2.5 enhancer. We proceeded to characterize these CPCs by examining their capacity to differentiate into cardiomyocytes and to proliferate. We then performed a large-scale temporal microarray expression analysis in order to identify genes that are uniquely upregulated or downregulated in the CPC population. We determined that the transcriptional profile of the mESC derived CPCs was consistent with pathways known to be active during embryonic cardiac development. We conclude that in vitro differentiation of mESCs recapitulates the early steps of mouse cardiac development.

Publication Title

Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27516
Preclinical Models for Neuroblastoma: Establishing a Baseline for Treatment
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, non-invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a standard of care chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents.

Publication Title

Preclinical models for neuroblastoma: establishing a baseline for treatment.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18308
FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis

Publication Title

FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE12694
Cooperative actions of p53 and Pten in normal and neoplastic progenitor cell renewal and differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Glioblastoma (GBM) is a highly lethal brain tumor presenting as one of two subtypes with distinct clinical histories and molecular profiles. The primary GBM subtype presents acutely as high-grade disease that typically harbors EGFR, PTEN and Ink4a/Arf mutations, and the secondary GBM subtype evolves from the slow progression of low-grade disease that classically possesses PDGF and p53 events1. Here, we show that concomitant CNS-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with striking clinical, pathological and molecular resemblance to primary GBM in humans. This genetic observation prompted p53 and PTEN mutational analysis in human primary GBM, demonstrating unexpectedly frequent inactivating mutations of p53 as well the expected PTEN mutations. Integrated transcriptomic profling, in silico promoter analysis and functional studies of murine neural stem cells (NSCs) established that dual, but not singular, inactivation of p53 and Pten promotes an undifferentiated state with high renewal potential and drives elevated c-Myc levels and its associated signature. Functional studies validated increased c-Myc activity as a potent contributor to the impaired differentiation and enhanced renewal of p53-Pten null NSCs as well as tumor neurospheres (TNSs) derived from this model. c-Myc also serves to maintain robust tumorigenic potential of p53-Pten null TNSs. These murine modeling studies, together with confirmatory transcriptomic/promoter studies in human primary GBM, validate a pathogenetic role of a common tumor suppressor mutation profile in human primary GBM and establish c-Myc as a key target for cooperative actions of p53 and Pten in the regulation of normal and malignant stem/progenitor cell differentiation, self-renewal and tumorigenic potential.

Publication Title

p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59557
Expression data of in vitro generated regulatory T cells overexpressing E47
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

E47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.

Publication Title

Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE6482
mECK36: a cell and animal model of virally induced Kaposi's sarcoma
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generated a cell (mECK36) that induced KS-like tumors in mice. mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+ and displayed a KSHV and host transcriptomes reminiscent of KS tumors.

Publication Title

In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP008976
Personal Omics Profiling Reveals Dynamic Molecular Phenotypes and Actionable Medical Risks
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Illumina Genome Analyzer IIx

Description

We have determined the whole genome sequence of an individual at high accuracy and performed an integrated analysis of omics profiles over a 1.5 year period that included healthy and two virally infected states. Omics profiling of transcriptomes, proteomes, cytokines, metabolomes and autoantibodyomes from blood components have revealed extensive, dynamic and broad changes in diverse molecular components and biological pathways that occurred during healthy and disease states. Many changes were associated with allele- and edit-specific expression at the RNA and protein levels, which may contribute to personalized responses. Importantly, genomic information was also used to predict medical risks, including Type II Diabetes (T2D), whose onset was observed during the course of our study using standard clinical tests and molecular profiles, and whose disease progression was monitored and subsequently partially managed. Our study demonstrates that longitudinal personal omics profiling can relate genomic information to global functional omics activity for physiological and medical interpretation of healthy and disease states. Overall design: Examination of blood component in 20 different time points over 1.5 years which includes 2 disease state and 18 healty state Related exome studies at: SRX083314 SRX083313 SRX083312 SRX083311

Publication Title

Personal omics profiling reveals dynamic molecular and medical phenotypes.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact