refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE16655
Developmental stage-specific interplay between GATA1 and IGF signaling in fetal hematopoiesis and leukemogenesis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon GSE16676
Rescue of murine Gata1s mutant M7 leukemic cells by full-length Gata1
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

In this project, we studied a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the GATA1 transcription factor (called GATA1s mutation). The model was generated through retroviral insertional mutagenesis in Gata1s mutant fetal liver progenitors. In this study, we analyzed the dependency of these leukemic cells on the Gata1s mutant protein.

Publication Title

Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE16679
Plag1 overexpression cooperates with Evi1 overexpression and Gata1s mutation in leading to M7 leukemia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

The goal of this study is to develop a Plag1 signature and determine how its overexpression contributes to leukemogenesis.

Publication Title

Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16684
Murine M7 leukemia derived from retroviral insertional mutagenesis of Gata1s fetal progenitors depends on IGF signaling
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The goal of this study is to derive a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the hematopoietic transcription factor, GATA1 (called GATA1s mutation). We achieved this through transduction of Gata1s mutant fetal progenitors by MSCV-based retrovirus expressing a GFP marker, followed by in vitro selection (for immortalized cell lines), and then in vivo selection (for transformed cell lines) through transplantation.

Publication Title

Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16682
Murine M7 leukemia derived from retroviral insertional mutagenesis of Gata1s fetal progenitors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The goal of this study is to derive a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the hematopoietic transcription factor, GATA1 (called GATA1s mutation). We achieved this through transduction of Gata1s mutant fetal progenitors by MSCV-based retrovirus expressing a GFP marker, followed by in vitro selection (for immortalized cell lines), and then in vivo selection (for transformed cell lines) through transplantation.

Publication Title

Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60746
Hey target gene regulation in murine ES cells and cardiomyocytes [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4.

Publication Title

Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55096
Molecular Adaptations of Striatal Spiny Projection Neurons During Levodopa-Induced Dyskinesia
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon

Description

L-3,4-dihydroxyphenylalanine (levodopa) treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). While it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene expression changes that occur in sub-classes of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes whose expression is correlated with levodopa dose, many of which are under the control of AP-1 and ERK signaling. In spite of homeostatic adaptations involving several signaling modulators, AP-1-dependent gene expression remains highly dysregulated in direct pathway SPNs (dSPNs) upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.

Publication Title

Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13379
Application of a translational profiling approach for the comparative analysis of CNS cell types.
  • organism-icon Mus musculus
  • sample-icon 107 Downloadable Samples
  • Technology Badge Icon

Description

Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, Translating Ribosome Affinity Purification (TRAP), permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations.

Publication Title

Application of a translational profiling approach for the comparative analysis of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13387
Comparative analysis of Drd1+ Medium Spiny Neurons, Drd2+ Medium Spiny Neurons, Motor Neurons, and Purkinje Neurons
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13385
Comparative analysis of Drd1+ Medium Spiny Neurons, Drd2+ Medium Spiny Neurons and whole brain
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact