refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon GSE6134
Offsprings of crosses between hypercholesterolemic and normocholesterolemic parents LUMC-HKG-ApoE-Atherosclerosis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Enhanced prenatal fatty streak formation in human fetuses has been associated with maternal hypercholesterolemia. However, the possible roles of maternal genetic background and in utero environment on development of atherosclerosis in adult life have not been unraveled. We generated genetically identical heterozygous apoE-deficient mice offspring with a different maternal background to study the intrauterine effect of maternal genotype and associated hypercholesterolemia on the developing vascular system. As read out for increased atherosclerosis development in adult life, a constrictive collar was placed around the carotid artery to induce lesion formation. A significant increase in endothelial cell activation and damage was detected in the carotid arteries of heterozygous apoE-deficient fetuses with apoE-deficient mothers compared with offspring from wild type mothers, but no fatty streak formation was observed. Postnatally, all carotid arteries revealed normal morphology. In adult offspring with maternal apoE-deficiency, the constrictive collar resulted in severe lesion (9/10) development compared with no to only minor lesions (2/10) in offspring of wild type mothers. Microarray analysis showed no effect of maternal apoE-deficiency on gene expression in adult offspring. We conclude that maternal apoE-deficiency not only affects fetal arteries, but also increases the susceptibility for development of collar-induced atherosclerosis in adult life.

Publication Title

Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact