refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE16716
MicroArray Quality Control Phase II (MAQC-II) Project
  • organism-icon Mus musculus, Rattus norvegicus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The MAQC-II Project: A comprehensive study of common practices for the development and validation of microarray-based predictive models

Publication Title

Effect of training-sample size and classification difficulty on the accuracy of genomic predictors.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Compound

View Samples
accession-icon GSE24061
MAQC-II Project: Hamner data set
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The Hamner data set (endpoint A) was provided by The Hamner Institutes for Health Sciences (Research Triangle Park, NC, USA). The study objective was to apply microarray gene expression data from the lung of female B6C3F1 mice exposed to a 13-week treatment of chemicals to predict increased lung tumor incidence in the 2-year rodent cancer bioassays of the National Toxicology Program. If successful, the results may form the basis of a more efficient and economical approach for evaluating the carcinogenic activity of chemicals. Microarray analysis was performed using Affymetrix Mouse Genome 430 2.0 arrays on three to four mice per treatment group, and a total of 70 mice were analyzed and used as the MAQC-II's training set (GEO Series GSE6116). Additional data from another set of 88 mice were collected later and provided as the MAQC-II's external validation set (this Series). The training dataset had already been deposited in GEO by its provider and its accession number is GSE6116.

Publication Title

Effect of training-sample size and classification difficulty on the accuracy of genomic predictors.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE15610
Knockout of the selenocysteine tRNA (Trsp) gene in mouse macrophage
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Comparative analysis of gene expression in bone marrow-derived macrophages (BMDM) from trsp knockout mice (Trspfl/fl-LysM-Cre+/-) and Control (Trspfl/fl-LysM-Cre-/-) mice.

Publication Title

Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE34215
Knockout of GPx4 gene in mouse keratinocyte
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Comparative analysis of gene expression in cultured primary keratinocytes isolated from newborn control (K14-cre; GPx4fl/+) and knockout (K14-cre; GPx4fl/fl) mice.

Publication Title

Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13061
Comparative transcriptomic analysis of BA- or BL-
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Bifidobacteria can protect from enteropathogenic infection through production of acetate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74677
Examination of loss of Selenophosphate Synthetase 1 (SPS1) in mouse tissues and cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

To examine the role of SPS1 in mammals, we generated a Sps1 knockout mouse and found that systemic SPS1 deficiency was embryonic lethal. Embryos were clearly underdeveloped by E8.5 and virtually reabsorbed by E14.5. Removal of Sps1 specifically in hepatocytes using Albumin-cre preserved viability, but significantly affected expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione-S-transferase omega 1. To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma cell line, which recapitulated changes in the glutathione system proteins. We further found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 has a role in supporting and/or sustaining cancer. In addition, the increased ROS levels observed in F9 SPS1/GLRX1 deficient cells were reversed and became more like those in F9 SPS1 sufficient cells by overexpressing mouse or human GLRX1. The results suggest that SPS1 is an essential mammalian enzyme with roles in regulating redox homeostasis and controlling cell growth.

Publication Title

Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE28447
Expression data from transgenic mice overexpressing RXR-gamma in the skeletal muscle (RXR-gamma mice)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Retinoid X receptor (RXR)-gamma is a nuclear receptor-type transcription factor expressed mostly in the skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXR-gamma in the skeletal muscle (RXR-gamma mice), which showed lower blood glucose than the control mice. We used microarrays to investigate their glucose metabolism gene expression change.

Publication Title

Increased systemic glucose tolerance with increased muscle glucose uptake in transgenic mice overexpressing RXRγ in skeletal muscle.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact