refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 44 results
Sort by

Filters

Technology

Platform

accession-icon GSE18607
Type I IFN-signaling following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Type I IFN-signaling suppresses an excessive IFN-{gamma} response and prevents lung damage and chronic inflammation following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice.

Publication Title

Type-I IFN signaling suppresses an excessive IFN-gamma response and thus prevents lung damage and chronic inflammation during Pneumocystis (PC) clearance in CD4 T cell-competent mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15750
Enhancing CD8 T Cell Memory by Modulating Fatty Acid Metabolism
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

CD8 T cells play a crucial role in immunity to infection and cancer. They are maintained in constant numbers, but upon stimulation with antigen undergo a developmental program characterized by distinct phases encompassing the expansion and then contraction of antigen-specific populations, followed by the persistence of long-lived memory cells. Although this predictable pattern of a CD8 T cell response is well established, the underlying cellular mechanisms regulating the transition to memory remain undefined. Here we show that TRAF6, an adapter protein in the TNF-receptor (TNFR) and IL-1R/TLR superfamily, regulates CD8 T cell memory development following infection by modulating fatty acid metabolism. We show that mice with a T cell-specific deletion of TRAF6 mount robust primary CD8 T cell effector responses, but have a profound defect in their ability to generate memory. This defect is CD8 T cell intrinsic and is characterized by the disappearance of antigen-specific cells in the weeks following primary immunization. Microarray analyses revealed that TRAF6-deficient CD8 T cells from early timepoints following immunization exhibit altered expression of genes that regulate fatty acid metabolism. Consistent with this, activated CD8 T cells lacking TRAF6 are unable to upregulate mitochondrial -oxidation in response to growth factor withdrawal in vitro. Treatment with drugs that induce fatty acid oxidation enabled CD8 T cell memory generation in the absence of TRAF6. Remarkably, these treatments also increased CD8 T cell memory in wild type mice, and consequently were able to significantly improve the efficacy of an experimental anti-cancer vaccine.

Publication Title

Enhancing CD8 T-cell memory by modulating fatty acid metabolism.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE8660
C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity. While p53 and the p73 isoform p73gamma have basic CTDs and form weak sequence-specific protein-DNA complexes, the major p73 isoforms alpha, beta and delta have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein-DNA complex stability, intranuclear mobility, promoter occupancy in vivo, transgene activation and induction of cell cycle arrest or apoptosis. A basic CTD in p53 and p73gamma therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. In contrast, most p73 isoforms exhibit constitutive DNA binding activity consistent with a predominant role in developmental control.

Publication Title

C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55588
Identification of activity-induced Npas4-regulated genes in cortical inhibitory and excitatory neurons (array)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

To identify the activity-induced gene expression programs in inhibitory and excitatory neurons, we analyzed RNA extracted from cultured E14 mouse MGE- and CTX-derived neurons (DIV 10) after these cultures were membrane-depolarized for 0, 1 and 6 hrs with 55mM extracellular KCl. To identify the gene programs regulated in these cells by the activity-induced early-response transcription factor Npas4, we repeated the same experiment in the MGE- and CTX-cultures lacking Npas4 (Npas4-KO).

Publication Title

Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE60049
Gene expression data from cultured mouse cortical (mCTX) neurons in different stimulation and knockdown conditions
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Although the induction of C-FOS in the brain has been extensively studied for several decades to date there has been no attempt to identify the targets of C-FOS at a genome wide level, and it was not known how many genes C-FOS activates in a given cell. To identify potential C-FOS target genes, we performed microarray analysis on RNA obtained from mouse cortical (mCTX) neurons infected with lentivirus containing either a control shRNA (targeting firefly luciferase) or c-Fos shRNA that were subsequently depolarized with 0, 1, 3, or 6 hours of KCl.

Publication Title

Genome-wide identification and characterization of functional neuronal activity-dependent enhancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69062
Genetic ablation of CD38 protects against Western diet-induced exercise intolerance and metabolic inflexibility
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

Publication Title

Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37676
Expression data from control and Ascorbic Acid (AA) stimulated Mc-3T3-E1 osteoblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is markedly upregulated upon Ascorbic Acid (AA) stimulation. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone secretion and deposition. RabGTPases are major regulators on protein trafficking throughout the cell. In this study, we identified the Rab GTPases that are upregulated during 5-day AA differentiation of OBs using microarray analysis, namely Rab1, Rab3d and Rab27b.

Publication Title

Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26076
Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Purpose: To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 around eye opening stage when the goblet cells first appear.

Publication Title

Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107349
Isolation of A Unique Hepatic Stellate Cell Population Expressing Integrin a8 from Embryonic Mouse Livers
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

There are a few markers for embryonic hepatic stellate cells in mouse embryonic livers

Publication Title

Isolation of a unique hepatic stellate cell population expressing integrin α8 from embryonic mouse livers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11035
Effect of 5HTT knockout and heterozygosity in whole mouse lung
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Rationale: While modulation of the serotonin transporter (5HTT) has shown to be a risk factor for pulmonary arterial hypertension for almost 40 years, there is a lack of in vivo data about the broad molecular effects of pulmonary inhibition of 5HTT. Previous studies have suggested effects on inflammation, proliferation, and vasoconstriction. The goal of this study was to determine which of these were supported by alterations in gene expression in serotonin transporter knockout mice. Methods: Eight week old normoxic mice with a 5-HTT knock-out (5HTT-/-) and their heterozygote(5HTT+/-) or wild-type(5HTT+/+) littermates had right ventricular systolic pressure(RVSP) assessed, lungs collected for RNA, pooled, and used in duplicate in Affymetrix array analysis. Representative genes were confirmed by quantitative RT-PCR and western blot. Results: RVSP was normal in all groups. Only 124 genes were reliably changed between 5HTT-/- and 5HTT+/+ mice. More than half of these were either involved in inflammatory response or muscle function and organization; in addition, some matrix, heme oxygenase, developmental, and energy metabolism genes showed altered expression. Quantitative RT-PCR for examples from each major group confirmed changes seen by array, with an intermediate level in 5HTT+/- mice. Conclusions: These results for the first time show the in vivo effects of 5HTT knockout in lungs, and show that many of the downstream mechanisms suggested by cell culture and ex vivo experiments are also operational in vivo. This suggests that the effect of 5HTT on pulmonary vascular function arises from its impact on several systems, including vasoreactivity, proliferation, and immune function.

Publication Title

Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact