refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE26076
Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Purpose: To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 around eye opening stage when the goblet cells first appear.

Publication Title

Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48007
Targeted disruption of Hotair leads to homeotic transformation and de-repression of imprinted genes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Targeted disruption of Hotair leads to homeotic transformation and gene derepression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48004
Targeted disruption of Hotair leads to homeotic transformation and de-repression of imprinted genes [Microarray Analysis]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Long noncoding RNAs (lncRNAs) are thought to be prevalent regulators of gene expression, but the consequences of lncRNA inactivation in vivo are mostly unknown. Here we show that targeted deletion of mouse Hotair lncRNA leads to de-repression of hundreds of genes, resulting in homeotic transformation of the spine and malformation of metacarpal-carpal bones. RNA-seq and conditional inactivation reveal an ongoing requirement of Hotair to repress HoxD genes and multiple imprinted loci such as Dlk1-Meg3 and Igf2-H19. Hotair binds to both Polycomb repressive complex 2 that methylates histone H3 at lysine 27 (H3K27) and Lsd1 complex that demethylates histone H3 at lysine 4 (H3K4) in vivo. Hotair inactivation causes coordinate H3K27me3 loss and H3K4me3 gain at select target genes throughout the genome. These results reveal a shared regulatory mechanism to enforce silent chromatin state at Hox and imprinted genes via Hotair lncRNA.

Publication Title

Targeted disruption of Hotair leads to homeotic transformation and gene derepression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17797
UGE and UGM Reveal Novel Signaling Pathways and Ligand-Receptor Interactions in the Primitive Prostate Stem Cell Niche
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their global gene expression profiles to define their differentially expressed regulators. To distinguish gene expression patterns that are shared by other developing epithelial/mesenchymal compartments in the embryo from those that pertain to the prostate stem cell niche, we also determine the global gene expression of epidermis and dermis of the same embryos. We identified a distinctive core of transcripts that were differentially regulated in the prostate stem cell niche. Our analysis indicates that several of the key transcriptional components that are likely to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Serbp1) and cell migration (e.g., Areb6 and Rreb1). Several of the promoter binding motifs that are enriched in the profiles are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. We also focused on defining ligand-receptor interactions that may be relevant in controlling signals in the stem cell niche and identified the Wnt/beta-catenin, ephrin, Notch, sonic hedgehog, FGF, TGF-beta and bone morphogenic signaling pathways as being of likely relevance in the prostate stem cell niches. Members of the integrins family including those that bind extracellular matrix proteins such as laminin and activate latent TGF-beta are also expressed in the prostate niche.development.

Publication Title

Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52797
Expression data of Myh6-MeCP2 transgenic mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Hearts of Myh6-MeCP2 transgenic mice and wildtype littermates were rapidly dissected and flash frozen.

Publication Title

Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37382
Subgroup specific somatic copy number aberrations in the medulloblastoma genome [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 285 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Affymetrix Human Gene 1.1 ST Array profiling of 285 primary medulloblastoma samples.

Publication Title

Subgroup-specific structural variation across 1,000 medulloblastoma genomes.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact