refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE68756
Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68613
Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Sox9 is a transcription factor expressed in most solid tumors. However, the molecular mechanisms underlying Sox9 function during tumorigenesis remain unclear. Here, using a genetic mouse model of basal cell carcinoma (BCC), the most frequent cancer in human, we show that Sox9 is expressed from the earliest step of tumor formation in a Wnt/-catenin dependent manner. Deletion of Sox9 together with the constitutive activation of Hedgehog (HH) signaling completely prevents BCC formation and leads to a progressive loss of oncogene expressing cells. Transcriptional profiling of oncogene expressing cells with Sox9 deletion, combined with in vivo ChIP-sequencing uncovers a cancer-specific gene network regulated by Sox9 that promotes stemness, extracellular matrix (ECM) deposition and cytoskeleton remodeling while repressing epidermal differentiation. Our study identifies the molecular mechanisms regulated by Sox9 that links tumor initiation and invasion.

Publication Title

Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12073
Expression data from transgenic Aire expressing pancreatic islets
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The aim of this study was to determine the effect of transgenic Aire expression on the transcriptional profile of a tissue that normally does not express Aire: pancreatic islets. The transcriptional profile of transgenic RIP-Aire27 islets was compared to non-transgenic littermate islets as well as to archival NOD thymic medullary epithelial cells (MEC) data. All data were from non-obese diabetic (NOD) mice

Publication Title

Transcriptional impact of Aire varies with cell type.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32265
Gene-expression changes resulting from loss of the mTORC1 component Raptor in murine hematopoietic stem and progenitor cell-enriched populations (HSPC)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

We investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion.

Publication Title

mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE111392
Differentiation analysis of Mouse Posterior Neural tube
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Posterior embryonic axis develops from neuromesodermal progenitors which differentiate into neural tube and paraxial mesoderm

Publication Title

Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm <i>in vitro</i>.

Sample Metadata Fields

Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact