refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE27302
Expression data from mouse colon tissue response to T cell transfer at week 0, 2, 4 and 6
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Temporal geneome profiling of T cell transfer colitis model

Publication Title

Temporal genome expression profile analysis during t-cell-mediated colitis: identification of novel targets and pathways.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE17553
Estradiol or Testosterone treated efferent duct and caput epididymis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

The role of estrogen and testosterone in the regulation of gene expression in the proximal reproductive tract is not completely understood. To address this question, mice were treated with testosterone or estradiol and RNA from the efferent ducts and caput epididymis was processed and hybridized to Affymetrix MOE 430 2.0 microarrays. Analysis of array output identified probe sets in each tissue with altered levels in hormone treated versus control animals. Hormone treatment efficacy was confirmed by determination of serum hormone levels pre- and post-treatment and observed changes in transcript levels of previously reported hormone-responsive genes. Tissue-specific hormone sensitivity was observed with 2867 and 3197 probe sets changing significantly in the efferent ducts after estrogen and testosterone treatment, respectively. In the caput epididymis, 117 and 268 probe sets changed after estrogen and testosterone treatment, respectively, demonstrating a greater response to hormone in the efferent ducts than the caput epididymis. Transcripts sharing similar profiles in the intact and hormone-treated animals compared with castrated controls were also identified. Ontological analysis of probe sets revealed a significant number of hormone-regulated transcripts encode proteins associated with lipid metabolism, transcription and steroid metabolism in both tissues. Real-time RT-PCR was employed to confirm array data and investigate other potential hormone-responsive regulators of proximal reproductive tract function. The results of this work reveal previously unknown responses to estrogen in the caput epididymis and to testosterone in the efferent ducts as well as tissue specific hormone sensitivity in the proximal reproductive tract.

Publication Title

Regulation of gene expression by estrogen and testosterone in the proximal mouse reproductive tract.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE6916
Embryonic Testis/Ovary Developmental Time Courses
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Profiling gene expression during the differentiation and development of the murine embryonic gonad.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6882
Embryonic Ovary Developmental Time Course
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Time course of gene expression in the murine embryonic ovary from the time of the indifferent gonad (11.5dpc) to birth (18.5dpc)

Publication Title

Profiling gene expression during the differentiation and development of the murine embryonic gonad.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6881
Embryonic Testis Developmental Time Course
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Time course of gene expression in the murine embryonic testis from the time of the indifferent gonad (11.5dpc) to birth (18.5dpc)

Publication Title

Profiling gene expression during the differentiation and development of the murine embryonic gonad.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27261
Dmrt1 (doublesex and mab-3 related transcription factor 1) conditional knockout expression analysis of P28 testes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Dmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. This study examines the result of conditional removal of Dmrt1 from Sertoli cells in P28 testis tissue.

Publication Title

DMRT1 prevents female reprogramming in the postnatal mammalian testis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13106
Regulated SMAD signalling in development
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Phosphorylation and subsequent nuclear translocation of SMAD proteins determine the cellular response to activin. Here we identify a novel means by which activin signalling is regulated to enable developmental stage-specific SMAD gene transcription. In response to activin A, immature proliferating mouse Sertoli cells exhibit nuclear accumulation of SMAD3, but not SMAD2, although both proteins are phosphorylated. In post-mitotic differentiating cells, both SMAD2 and SMAD3 accumulate in the nucleus. Furthermore, immature Sertoli cells are sensitive to activin dosage; at higher concentrations maximal SMAD3 nuclear accumulation is observed, accompanied by a small, but significant, increase in nuclear SMAD2. Microarray analysis confirmed that differential SMAD utilization correlated with altered transcriptional outcomes and identified new activin target genes, Gja1 and Serpina5, which are known to be required for Sertoli cell development and male fertility. In immature Sertoli cells, genetic or transient knockdown of SMAD3 enhanced SMAD2 nuclear accumulation in response to activin, with increased Serpina5 mRNA levels associated with nuclear localized SMAD2. In transgenic mice with altered activin bioactivity that display male fertility phenotypes, testicular Gja1 and Serpina5 mRNA levels reflected altered in vivo activin levels. We conclude that regulated nuclear accumulation of phosphorylated SMAD2 is a novel determinant of developmentally regulated activin signalling.

Publication Title

Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64761
Identification of AUF1 target mRNAs
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Regulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH-3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, many mRNAs were enriched without a high ARE score suggesting that AUF1 has a broader binding spectrum than standard AUUUA repeats. AUF1 did not preferentially bind to unstable mRNAs. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.

Publication Title

Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE18396
Dmrt1 (doublesex and mab-3 related transcription factor 1) knockout expression analyses in E13.5 testes in S6 background
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Dmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. In mice of the 129Sv strain, loss of Dmrt1 causes a high incidence of teratomas. Mutant 129Sv germ cells undergo apparently normal differentiation up to embryonic day 13.5 (E13.5), but some cells fail to arrest mitosis and ectopically express pluripotency markers. Expression analysis and chromatin immunoprecipitation identified DMRT1 target genes whose misexpression may underly teratoma formation.

Publication Title

The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18430
Identification of angiotensin II-responsive genes in the kidney
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

In order to characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1 ug/kg/min), using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. At baseline, 405 genes were differentially expressed (>1.5X) between WT and KO kidneys. Of these, more than 80% were up-regulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ~805 genes was altered (18% up-regulated, 82% repressed). Genes in metabolism and ion transport pathways were up-regulated while there was attenuated expression of protective genes against oxidative stress including glutathione synthetase and mitochondrial SOD2. Angiotensin II infusion has little effect on blood pressure in KOs. Nonetheless, expression of more than 250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were up-regulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation.

Publication Title

Gene expression profiles linked to AT1 angiotensin receptors in the kidney.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact