refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE10285
Role of Transglutaminase 2 in Liver Injury via Crosslinking and Silencing of Transcription Factor, Sp1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression of Ethanol-treated hepatocytes from WT and transglutaminase 2 knockout mice

Publication Title

Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26551
Roles of STAT3 and STAT5 in regulation of gene expression under Th17 differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Interleukin 2 (IL-2), a cytokine linked to human autoimmune diseases, limits IL-17 production. We show that deletion of Stat3 in T cells abrogates IL-17 production and attenuates autoimmunity associated with IL-2 deficiency. While STAT3 induces IL-17 and RORt and inhibits Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORt. We found that STAT3 and STAT5 bound to multiple common sites across the Il17 genetic locus. The induction of STAT5 binding by IL-2 was associated with a reduction in STAT3 binding at these sites and the inhibition of associated active epigenetic marks. Titrating the relative activation of STAT3 and STAT5 modulated TH17 cell specification. Thus, the balance rather than the absolute magnitude of these signals determines the propensity of cells to make a key inflammatory cytokine.

Publication Title

Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57729
Differential expression of mouse Grem1+ Vs. Grem1- bone-marrow cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The gene expression of bone marrow cells of mice enriched for

Publication Title

Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE23505
Enhanced Pathogenicity of Th17 cells Generated in the Absence of Transforming Growth Factor- Signaling
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

CD4+ T cells that selectively produce interleukin (IL)-17, are critical for host defense and autoimmunity1-4. Crucial for T helper17 (Th17) cells in vivo5,6, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-1 have been argued to be the factors responsible for initiating specification7-10. Herein, we show that Th17 differentiation occurs in the absence of TGF- signaling. Neither IL-6 nor IL-23 alone efficiently generated Th17 cells; however, these cytokines in combination with IL-1 effectively induced IL-17 production in nave precursors, independently of TGF-. Epigenetic modification of the Il17a/Il17f and Rorc promoters proceeded without TGF-1, allowing the generation of cells that co-expressed Rort and T-bet. T-bet+Rort+ Th17 cells are generated in vivo during experimental allergic encephalomyelitis (EAE), and adoptively transferred Th17 cells generated with IL-23 in the absence of TGF-1 were more pathogenic in this experimental disease. These data suggest a new model for Th17 differentiation. Consistent with genetic data linking the IL23R with autoimmunity, our findings re-emphasize the role of IL-23 and therefore have important implications for the development of new therapies.

Publication Title

Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE28031
Microarray gene expression profiling of heart failure induced in apolipoprotein E-deficient mice by treatment with rosiglitazone
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The anti-diabetic drug and agonist of the peroxisome proliferator-activated receptor gamma (Pparg), rosiglitazone, was recently withdrawn in many countries because the drug use was associated with an increased risk of heart failure. To investigate underlying pathomechanisms, we chose 6-month-old apolipoprotein E (apoE)-deficient mice, which are prone to atherosclerosis and insulin resistance, and thereby mimic the risk profile of patients with cardiovascular disease. After 8 weeks of rosiglitazone treatment (30 mg/kg/day), echocardiography and histology analyses demonstrated that rosiglitazone had induced heart failure with cardiac dilation. Concomitantly, cardiac lipid overload and lipid-induced cardiomyocyte death developed. The microarray gene expression study of heart tissue from rosiglitazone-treated apoE-deficient mice relative to untreated apoE-deficient mice and non-transgenic B6 mice identified cardiac Pparg-dependent lipid metabolism genes in rosiglitazone-treated mice, which seem to trigger a major heart failure promoting pathway.

Publication Title

Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE26816
Comparative gene expression of mouse Pancreatic specific transcription factor 1a (Ptf1a/p48) in pancreatic progenitor cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Ptf1a was identified as the essential transcription factor which controls pancreatic exocrine enzyme expression. With lineage tracing eperiments Ptf1a was recognized as an important pancreatic progenitor transcription factor and Ptf1a null mice do not develop a pancreas.

Publication Title

RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85650
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE85583
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer [array]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

PAX8-PPARG fusion protein (PPFP) results from a t(2;3)(q13;p25) chromosomal translocation, is found in 30% of follicular thyroid carcinomas, and demonstrates oncogenic capacity in transgenic mice. A PPARG ligand, pioglitazone, is highly therapeutic in mice with PPFP thyroid carcinoma. We used our previously characterized transgenic mouse model of PPFP thyroid carcinoma to identify PPFP binding sites in vivo using ChIP-seq, and to identify genes and pathways regulated by PPFP with and without pioglitazone treatment via integration with RNA-seq and Affymetrix microarray data. This submission contains the Affymetrix microarray data. PPFP and pioglitazone regulated genes involved in lipid and fatty acid metabolism, ribosome function, immune processes, cell death and other cancer-related processes. The RNA-seq data yielded similar findings.

Publication Title

Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE19997
POU4F1 is associated with t(8;21) AML and contributes directly to its unique transcriptional signature
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

POU4F1 is associated with t(8;21) acute myeloid leukemia (AML) and contributes directly to its unique transcriptional signature

Publication Title

POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44091
Genome-wide expression of the epithelial layer cells of mice injected with Clostridium difficile Toxin A and B
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon

Description

Toxin A (TcdA) and Toxin B (TcdB), of the pathogen Clostridium difficile, are virulence factors that cause gross pathologic changes (e.g. inflammation, secretion, and diarrhea) in the infected host, yet the molecular and cellular pathways leading to observed host responses are poorly understood. To address this gap, TcdA and/or TcdB were injected into the ceca of mice and the genome-wide transcriptional response of epithelial layer cells was examined. Bioinformatic analysis of gene expression identified sets of cooperatively expressed genes. Further analysis of inflammation associated genes revealed dynamic chemokine responses.

Publication Title

In vivo physiological and transcriptional profiling reveals host responses to Clostridium difficile toxin A and toxin B.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact