refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE12214
Microcystin Genomic Effects on Zebrafish Larvae
  • organism-icon Danio rerio
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Zebrafish (Danio rerio) were obtained from the Zebrafish Research Facility maintained in the Center for Environmental Biotechnology at the University of Tennessee. Fish husbandry, spawning, and experimental procedures were conducted with approval from the University of Tennessee Institutional Animal Care and Use Committee (Protocol #1690-1007). Water for holding fish and conducting experiments (hereafter referred to as fish water) consisted of MilliQ water (Millipore, Bedford, MA) with ions added: 19 mg/L NaHCO3, 1 mg/L sea salt (Instant Ocean Synthetic Sea Salt, Mentor, OH), 10 mg/L CaSO4, 10 mg/L MgSO4, 2 mg/L KCl. Embryos were obtained by spawning adult fish with no history of contaminant exposure. Fertilization of embryos took place at the same time ( 15 min.), such that larvae used in experiments were of similar age at the time of exposure. All activities (maintenance of adult fish, spawning, and experiments) were conducted in an environmental chamber with a temperature of 27 1 C and 14:10h light:dark photoperiod.

Publication Title

Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of Cyanobacteria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE80822
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.

Publication Title

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.

Sample Metadata Fields

Genetic information

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact