refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 23 results
Sort by

Filters

Technology

Platform

accession-icon GSE68842
A Long Non-coding RNA, LncMyoD, Regulates Skeletal Muscle Differentiation by Blocking IMP2-mediated mRNA Translation
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Increasing evidence suggests that Long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of novel intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding-protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well-conserved between human and mouse, its locus, gene structure and function is preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation.

Publication Title

A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation.

Sample Metadata Fields

Age

View Samples
accession-icon GSE13379
Application of a translational profiling approach for the comparative analysis of CNS cell types.
  • organism-icon Mus musculus
  • sample-icon 107 Downloadable Samples
  • Technology Badge Icon

Description

Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, Translating Ribosome Affinity Purification (TRAP), permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations.

Publication Title

Application of a translational profiling approach for the comparative analysis of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13387
Comparative analysis of Drd1+ Medium Spiny Neurons, Drd2+ Medium Spiny Neurons, Motor Neurons, and Purkinje Neurons
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13385
Comparative analysis of Drd1+ Medium Spiny Neurons, Drd2+ Medium Spiny Neurons and whole brain
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13384
Comparative analysis of Drd1+ Medium Spiny Neurons and Drd2+ Medium Spiny Neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45551
Prevention of Mouse AA with IL-15 pathway inhibitors
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon

Description

Our goal was to identify gene expression patterns that correlated with prevention of autoimmune alopecia in C3H/HeJ mice following alopecic graft transplantation

Publication Title

Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE48104
DREAM silencing is part of a neuroprotective mechanism in Huntington's disease
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Deregulated intracellular Ca2+ homeostasis underlies synaptic dysfunction and is a common feature in neurodegenerative processes, including Huntington's disease (HD). DREAM/calsenilin/KChIP-3 is a multifunctional Ca2+ binding protein that controls the expression level and/or the activity of several proteins related to Ca2+ homeostasis, neuronal excitability and neuronal survival. We found that expression of endogenous DREAM (DRE antagonist modulator) is reduced in the striatum of R6 mice, in STHdh-Q111/111 knock in striatal neurons and in HD patients. DREAM down regulation in R6 striatum occurs early after birth, well before the onset of motor coordination impairment, and could be part of an endogenous mechanism of neuroprotection, since i) R6/2 mice hemizygous for the DREAM gene (R6/2xDREAM+/-) showed delayed onset of locomotor impairment and prolonged lifespan, ii) motor impairment after chronic administration of 3-NPA was reduced in DREAM knockout mice and enhanced in daDREAM transgenic mice and, iii) lentiviral-mediated DREAM expression in STHdh-Q111/111 knock in cells sensitizes them to oxidative stress. Transcriptomic analysis showed that changes in gene expression in R6/2 striatum were notably reduced in R6/2xDREAM+/- striatum. Chronic administration of repaglinide, a molecule able to bind to DREAM in vitro and to accelerate its clearance in vivo, delayed the onset of motor dysfunction, reduced striatal loss and prolonged the lifespan in R6/2 mice. Furthermore, exposure to repaglinide protected STHdh-Q111/111 knock in striatal neurons sensitized to oxidative stress by lentiviral-mediated DREAM overexpression. Thus, genetic and pharmacological evidences disclose a role for DREAM silencing in early neuroprotective mechanisms in HD.

Publication Title

Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17542
VTA neurons show an adaptive transcriptional response to MPTP which differs from SN neurons
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Implications for neuroprotection in Parkinson's disease

Publication Title

VTA neurons show a potentially protective transcriptional response to MPTP.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact