refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 35 results
Sort by

Filters

Technology

Platform

accession-icon SRP068364
Transcriptional profiling through RNA-seq of zebrafish larval liver after exposure to biliatresone, a biliary toxin.
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We sequenced liver mRNA isolated from biliatresone-treated zebrafish larvae and DMSO-treated controls in order to elucidate the molecular pathways induced by biliatresone, a biliary toxin that is responsible for outbreaks of biliary atresia in Australian liverstock. Overall design: Liver mRNA profiles of biliatresone-treated zebrafish larvae and DMSO-treated controls were generated by deep sequencing, in duplicates.

Publication Title

Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21687
Comparative genomics matches mutations and cells to generate faithful ependymoma models
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Genomic technologies have unmasked molecularly distinct subgroups among tumors of the same histological type; but understanding the biologic basis of these subgroups has proved difficult since their defining alterations are often numerous, and the cellular origins of most cancers remain unknown. We sought to decipher complex genomic data sets by matching the genetic alterations contained within these, with candidate cells of origin, to generate accurate disease models. Using an integrated genomic analysis we first identified subgroups of human ependymoma: a form of neural tumor that arises throughout the central nervous system (CNS). Validated alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. Matching the transcriptomes of human ependymoma subgroups to those of distinct types of mouse radial glia (RG)neural stem cells (NSCs) that we identified previously to be a candidate cell of origin of ependymoma - allowed us to select RG types most likely to represent cells of origin of disease subgroups. The transcriptome of human cerebral ependymomas that amplify EPHB2 and delete INK4A/ARF matched most closely that of embryonic cerebral Ink4a/Arf-/- RG: remarkably, activation of EphB2 signaling in this RG type, but not others, generated highly penetrant ependymomas that modeled accurately the histology and transcriptome of one human cerebral tumor subgroup (subgroup D). Further comparative genomic analysis revealed selective alterations in the copy number and expression of genes that regulate neural differentiation, particularly synaptogenesis, in both mouse and human subgroup D ependymomas; pinpointing this pathway as a previously unknown target of ependymoma tumorigenesis. Our data demonstrate the power of comparative genomics to sift complex genetic data sets to identify key molecular alterations in cancer subgroups.

Publication Title

Cross-species genomics matches driver mutations and cell compartments to model ependymoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13063
Effects of extensive fasting and subsequent feeding on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding has a profound effect on the circadian clock. Fasting and feeding paradigms are known to influence hepatic transcription. This dataset shows the dynamic effects of refeeding mice after a 24hour fasting period.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18004
Differential gene expression in stellate sympathetic ganglia after cardiac pressure overload
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Transcriptom analysis of stellate sympathetic ganglia after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.

Publication Title

Sympathetic alpha(2)-adrenoceptors prevent cardiac hypertrophy and fibrosis in mice at baseline but not after chronic pressure overload.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE28887
Gene expression profile of Age associated B cells, Follicular B cells, and B1 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We performed gene expression profile of different B cell populations found in old (18 months old) C57BL/6 female mouse (B1 cells were recovered from both young and old C57BL/6 mice). Mice were nave and healthy (no autoimmunity was detected at the time of the experiment).

Publication Title

Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE24291
Expression data from differentiating ES cells expressing Snail during Wnt inhibition
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

ES cells differentiated in the presence of the Wnt inhibitor DKK1 fail to express the transcription factor Snail and undergo EMT. We generated an ES cell line, A2.snail, that induced Snail expression upon addition of doxycycline addition.

Publication Title

Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE4035
Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression (palme-affy-mouse-84746)
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

These data are from the brains (amygdala and hippocampus) of mice originally derived from a cross between C57BL/6J and DBA/2J inbred strains. We used short-term selection to produce outbred mouse lines with differences in contextual fear conditioning, which is a measure of fear learning. We selected for a total of 4 generations. Fear learning differed in the selected lines and this difference was stronger with each successive generation of selection. These mice also showed differences for measures of anxiety-like behavior, but were not different for tests of non-fear motivated learning, suggesting that selection altered alleles that are specifically involved in emotional behaviors. We identified several QTLs for the selection response. We used Affymetrix microarrays to identify differentially expressed genes in the amygdala and hippocampus of mice from the final generation of selection. Amygdala and hippocampus samples were rapidly dissected out of experimentally nave mice f rom each selected line. Three samples were pooled and hybridized to each array. Experimentally nave mice were used because the behavior of the mice can be reliably anticipated due to their lineage. Thus, these gene expression differences are not due to the response to human handling, foot shock or fear-inducing conditioned stimuli. We have a second similar study that focuses on a different selected population that was based on C57BL/6J and A/J mice (see GES4034).

Publication Title

Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact