refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE60746
Hey target gene regulation in murine ES cells and cardiomyocytes [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4.

Publication Title

Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35181
beta-Arrestin Pathway-Selective G Protein-Coupled Receptor Agonists Engender Unique Biological Efficacy In Vivo
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Biased GPCR agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, D-Trp12,Tyr34-bPTH(7-34) (PTH-{beta}arr), a biased agonist for the type 1 parathyroid hormone receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both PTH-{beta}arr and the conventional agonist PTH(1-34) stimulate anabolic bone formation. To understand how two PTH1R ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 weeks with vehicle, PTH-{beta}arr or PTH(1-34). Treatment of wild type mice with PTH-{beta}arr primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival and migration. These responses were absent in beta-arrestin2 null mice, identifying them as downstream targets of beta-arrestin2-mediated signaling. In contrast, PTH(1-34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. PTH(1-34) actions were less dependent on beta-arrestin2, as might be expected of a ligand capable of G protein activation. These results illustrate the uniqueness of biased agonism in vivo and demonstrate that functional selectivity can be exploited to change the quality of GPCR efficacy.

Publication Title

β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE14522
Effects of BDNF in Rodent Models of Aging and Alzheimer's Disease
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE14499
Effect of BDNF on the APP transgenic mouse model of Alzheimer's disease
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

We examined transgenic (TG) mice expressing human APP695 bearing the double Swedish (671KM>NL) and Indiana (717V>F) amyloid precursor protein (APP) mutations. Lentiviral vectors constitutively expressing BDNF-GFP under control of the CMV/-actin hybrid promoter or GFP alone were injected into the entorhinal cortices of TG mice bilaterally at age 6 months, a time point by which neuropathological degeneration and cell loss are established. Age-matched wild-type littermates underwent sham surgery or injection of lentivirus expressing GFP into the entorhinal cortices bilaterally.

Publication Title

Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE69062
Genetic ablation of CD38 protects against Western diet-induced exercise intolerance and metabolic inflexibility
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

Publication Title

Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact