refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE14361
IFNa activates dormant HSCs in vivo
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. Upon injury these cells are induced to proliferate in order to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFN), HSCs efficiently exit G0 and enter an active cell cycle. HSCs respond to IFN treatment by increased phosphorylation of STAT1 and PKB/Akt, expression of IFN target genes and up-regulation of stem cell antigen-1 (Sca-1). HSCs lacking either the interferon-/ receptor (IFNAR), STAT1 or Sca-1 are insensitive to IFN stimulation, demonstrating that STAT1 and Sca-1 mediate IFN induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-FU1, HSCs pre-treated (primed) with IFN and thus induced to proliferate are efficiently eliminated by 5-FU exposure in vivo. Conversely, HSCs chronically activated by IFN are functionally compromised and are rapidly out competed by non-activatable IFNAR-/- cells in competitive repopulation assays. In summary, while chronic activation of the IFN pathway in HSCs impairs their function, acute IFN treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFN on leukemic cells and raise the possibility for novel applications of type I interferons to target cancer stem cells.

Publication Title

IFNalpha activates dormant haematopoietic stem cells in vivo.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE32937
MicroRNA-29 in Aortic Dilation: Implications for Aneurysm Formation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

We compared the aorta of 6-weeks-old mice (young) with 18-months-old mice (old). Using the publicly available tools Sylamer and DIANA-mirExTra, we identified an enrichment for miR-29 binding sites in the 3'UTR of genes downregulated in the aged aortas. We subsequently showed that inhibition of miR-29 in aged mice prevented dilation of the aorta.

Publication Title

MicroRNA-29 in aortic dilation: implications for aneurysm formation.

Sample Metadata Fields

Age, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact