refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE21448
Renal gene expression in uninephrectomized diabetic OVE26 mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

OVE26 (OVE) mice provide a useful model of advanced diabetic nephropathy (DN) with respect to albuminuria and pathologies. We showed that albuminuria, reduced GFR and interstitial fibrosis, which normally take 8-9 months to develop, are more advanced in uninephrectomized OVE mice within 10 weeks of surgery, at 4.5 months of age. The accelerated progression of renal damage, especially renal fibrosis in OVE-uni mice, was also identified at the gene expression level. The hepatic fibrosis/hepatic stellate cell activation pathway was by far the most significant Ingenuity canonical pathway identified by gene array in OVE-uni mice. Many inflammatory- and immune-related pathways were found among the top pathways up-regulated in OVE-uni kidneys, including acute-phase response signaling, leukocyte extravasation, IL6, IL10, IL12 signaling, TREM1 signaling, dendritic cell maturation and the complement system. These pathways were also dramatically up-regulated in 8-month-old OVE mice (GSE20636). Nephrectomized OVE mice are a much faster alternative model for studying advanced renal disease in diabetes.

Publication Title

Uninephrectomy of diabetic OVE26 mice greatly accelerates albuminuria, fibrosis, inflammatory cell infiltration and changes in gene expression.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE23700
HOP homeobox (Hopx) and Histone deacetylase-2 (Hdac2) deficiency effect on the embryonic heart
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of heart ventricles from Hopx, Hdac2, and both Hopx-Hdac2 deficient embryos at embryonic day E16.5. Results provide insight into the role of Hopx and Hdac2 in cardiac development.

Publication Title

Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13493
Expression data from developing thymocytes of N15TCR transgenic Rag2 deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

T cell development relies on the precise developmental control of various cellular functions for appropriate positive and negative selection. Previously, gene expression profiling of peptide-driven negative selection events in the N15 TCR class I MHC-restricted mouse and D011.10 TCR class II MHC-restricted mouse has offered insights into the coordinate engagement of biological processes affecting thymocyte development. However, there has been little comparable detailed in vivo global genome expression analysis reported for positive selection.

Publication Title

PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6770
Gene Expression Data in HDAC2 KO Myocardium
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global programme of gene expression underlying cardiac development by HDAC2 and identified distinct classes of up-regulated and down-regulated genes during this process.

Publication Title

Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24437
Persistence of effector memory Th1 cells is regulated by the homeobox only protein Group1 Hopx-/-, Group2 Hopx+/-, Group3 Hopx+/+
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Hopx appears to be needed for persistence of Th1 effector memory cells. IFN-gamma-producing Th cells are significantly reduced in Hopx-deficient mice compared to Hopx-expressing littermates and Hopx-deficient Th1 cells show a defective persistence upon adoptive transfer. Moreover, Hopx protects Th1 cells from Fas-mediated cell death in vitro. To further dissect the role of Hopx and to identify target genes of Hopx, we have performed transcriptome analysis to compare gene expression in Hopx-deficient versus Hopx-competent Th1 cells. In agreement with the role of Hopx in supporting survival of Th1 effector memory cells, anti-apoptotic cells were up-regulated and pro-apoptotic genes were down-regulated in Hopx-competent compared to Hopx-deficient Th1 cells.

Publication Title

Persistence of effector memory Th1 cells is regulated by Hopx.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact