refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE41747
MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors, despite transcriptional feedback onto ERK.
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon

Description

Neurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials.

Publication Title

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46990
Gene expression changes induced by expression of MN1 deletion mutants in murine bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia, share the same pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of the malignant disease. We studied the relationship of different protein domains of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal domain of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal domain resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the most N-terminal domain. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active domains. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

Publication Title

Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact