refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE20398
Regulation of chondrogenesis in early murine limb mesenchyme by BMP signals
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon

Description

Numerous studies have established a critical role for BMP signaling in skeletal development. In the developing axial skeleton, sequential SHH and BMP signals are required for specification of a chondrogenic fate in somitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals we examined BMP action in mesenchymal populations derived from the early murine limb bud (~ E10.5). These populations exhibited a graded response to BMPs, in which early limb mesenchymal (EL) cells (from the distal hind limb) displayed an anti-chondrogenic response, whereas BMPs promoted chondrogenesis in older cell populations. To better understand the molecular basis of disparate BMP action in these various populations, gene expression profiling with Affymetrix microarrays was employed to identify BMP-regulated genes. These analyses showed that BMPs induced a distinct gene expression pattern in the EL cultures versus later mesenchymal limb populations (IM and LT).

Publication Title

Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12985
Differentiation time course of trophoblast stem cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

To characterized the changes in gene expression during the differentiation of TS cells. TS cells can be derived from two time point during embryogenesis, cell lines tested were from each of these time points.

Publication Title

Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12986
Expression of Cdx2 or Gata3 in R1 mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

To identify whether Cdx2 or Gata3 can activate trophoblast specific gene expression when expressed in R1 ES cells. To assess the dependency of Gata3 activity on Cdx2, Gata3 was also expressed in Cdx2-null ES cells.

Publication Title

Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19780
A novel approach to investigate tissue-specific trinucleotide repeat instability
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

In Huntingtons disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors.

Publication Title

A novel approach to investigate tissue-specific trinucleotide repeat instability.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9025
A novel approach to investigate tissue-specific trinucleotide repeat instability - A validation set of prediction model
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

In Huntingtons disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors.

Publication Title

A novel approach to investigate tissue-specific trinucleotide repeat instability.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE18042
Erythroid differentiation: G1E model
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of erythroid differentiation using Gata1 gene-disrupted G1E ER4 clone cells. Estradiol addition activates an ectopically expressed Gata-1-estrogen receptor fusion protein, triggering synchronous differentiation. 30 hour time course corresponds roughly to late burst-forming unit-erythroid stage (t=0 hrs) through orthochromatic erythroblast stage (t=30 hrs).

Publication Title

Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58307
Expression profiling of KRas ablation surviving cells and matched Kras expressing spheres in pancreatic tumors
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

In this dataset, we include the expression data obtained from KRas expressing tumors, matched Kras expressing tumor spheres, surviving cells and surviving cells after KRas re-expression for 24hs

Publication Title

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106581
Cancer-associated rs6983267 SNP and its accompanying long non-coding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

The cancer-risk associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long non-coding RNA CCAT2 in the highly amplified 8q24.21 region has been implicated in cancer predisposition, though causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by downregulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel disease-specific RNA mutation (named DNA-to-RNA allelic imbalance, DRAI) at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.

Publication Title

Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact