refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE23200
Immunoprotective properties of sertoli cells: potential genes and pathways that confer immune privilege for sertoli cell transplantation and in the testis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Immune privileged Sertoli cells (SC) survive when transplanted across immunological barriers and prolong the survival of co-transplanted allogeneic and xenogeneic cells in rodent models. However, the mechanism for this survival and protection remains unresolved. We have recently identified a mouse Sertoli cell line (MSC-1) that lacks some of the immunoprotective abilities associated with primary SC. The objective of this study was to compare the survival and gene expression profiles of primary SC and MSC-1 cells to identify factors or immune-related pathways potentially important for SC immune privilege. Primary SC or MSC-1 cells were transplanted as allografts to the renal subcapsular area of nave BALB/c mice and cell survival was analyzed by immunohistochemistry. Additionally, transcriptome differences were investigated by microarray and pathway analyses. While primary SC were detected within the grafts with 100% graft survival throughout the 20-day study, MSC-1 cells w ere rejected between 11 and 14 days with 0% graft survival at 20 days post-transplantation. Microarray analysis identified 3198 genes that were differentially expressed with a 4-fold or higher level in primary SC. Cluster and pathway analyses indicate that the mechanism of SC immune privilege is likely complex with multiple immune modulators being involved such as immunosuppressive cytokines and complement inhibitors, lipid mediators for controlling inflammation, and junctional molecules that control leukocyte movement in and out of the immune privileged space. Further study of these immune modulators will increase our understanding of SC immune privilege and in the long-term lead to improvements in transplantation success.

Publication Title

Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE13379
Application of a translational profiling approach for the comparative analysis of CNS cell types.
  • organism-icon Mus musculus
  • sample-icon 107 Downloadable Samples
  • Technology Badge Icon

Description

Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, Translating Ribosome Affinity Purification (TRAP), permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations.

Publication Title

Application of a translational profiling approach for the comparative analysis of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE108640
Ichthyosis molecular fingerprinting shows profound Th17-skewing and a unique barrier genomic signature
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to analyze the genomic signatures and profiles of skin from ichthyosis (various subtypes) vs. healthy patients. The analysis strategy was to study differentially expressed genes common to the ichthyosis shared phenotype, as well as individual ichthyosis subtypes, and compare and contrast to the genomic profiles of atopic dermatitis and psoriasis.

Publication Title

Ichthyosis molecular fingerprinting shows profound T<sub>H</sub>17 skewing and a unique barrier genomic signature.

Sample Metadata Fields

Age, Specimen part, Disease

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact