refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11 results
Sort by

Filters

Technology

Platform

accession-icon GSE17105
Gene expression regulated by G-actin switch
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

We analysed the G-actin regulated transcriptome by gene expression analysis using previously characterised actin binding drugs. We found many known MAL/MRTF-dependent target genes of serum response factor (SRF) as well as unknown directly regulated genes.

Publication Title

Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction.

Sample Metadata Fields

Time

View Samples
accession-icon GSE19836
A mouse Embryonic Stem Cell Bank for inducible overexpression of human chromosome 21 genes
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon

Description

The HSA21-mES Cell Bank includes, in triplicate clones, thirty-two murine orthologs of HSA21 genes, which can be overexpressed in an inducible manner using the Tet-off system integrated in the Rosa26 locus.

Publication Title

A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65859
Differentially regulated genes in adipocytes derived from Men1-null vs WT mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

MEN1 is a tumor suppressor gene loss of which causes lipoma (fatty tumors under the skin) and many other endocrine and non-endocrine tumors. It's target genes in fat cells (adipocytes) are unknown. Gene expression in adipocytes that were in vitro differentiated from mouse embryonic stem cells (mESCs) of Men1-nul l(Men1-KO) and WT mice were compared to assess the expression of genes upon menin loss in adipocytes that could lead to the deveopment of lipoma.

Publication Title

Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14678
Expression Profile of Skeletal Muscle from Young and Aged C57B1/6 Mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Our laboratory wanted to define the transcription profile of aged skeletal muscle. For this reason, we performed a triplicate microarray study on young (3 weeks) and aged (24 months) gatrocnemius muscle from wild-type C57B16 Mice

Publication Title

Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE43710
Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43708
Expression data from Influenza A infected mouse primary tracheal epithelial cell cultures (MTEC), from wild-type, IFNAR1-/-, IL28Ra-/- and IFNAR1-/- IL28Ra-/- double ko
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global programme of gene expression in response to Influenza A (PR8) infection

Publication Title

Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34773
Skeletal muscle PGC-1a mediates mitochondrial, but not metabolic, changes during calorie restriction.
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation and reactive oxygen species scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1a is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1a activity. To test this model for the first time, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1a (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1a is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy demonstrated that PGC-1a is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1a is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1a nor mitochondrial biogenesis in skeletal muscle are required for the metabolic benefits of CR.

Publication Title

Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35332
Stem cell factor programs the mast cell activation phenotype
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Mast cells, activated by antigen via the high affinity receptor for IgE (FcRI), release an array of pro-inflammatory mediators that contribute to allergic disorders such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation and survival, and, under acute conditions, enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal antigen-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcRI-mediated degranulation and cytokine production. The hypo-responsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization, with evidence implicating a down-regulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.

Publication Title

Stem cell factor programs the mast cell activation phenotype.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39382
IL-33 induces a hypo-responsive human mast cell phenotype
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Interleukin-33 (IL-33) is elevated in afflicted tissues of patients with mast cell-dependent chronic allergic diseases. Based on its acute effects on mouse mast cells (MCs), IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of chronic IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. We now find that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to antigen. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hypo-responsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation including antigen-mediated calcium mobilization and cytoskeletal reorganization; potentially as a consequence of down-regulation of the expression of PLCg1 and Hck. These findings suggest that IL-33 may play a protective, rather than a causative role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to down-regulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.

Publication Title

IL-33 induces a hyporesponsive phenotype in human and mouse mast cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE19668
Genetic Determinants for Susceptibility to Staphylococcus aureus Infection in A/J and C57BL/6J
  • organism-icon Mus musculus
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon

Description

Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that factors on chromosomes (chr) 8, 11, and 18 are responsible for susceptibility to S. aureus sepsis in A/J mice. F1 mice from C57BL/6J X CSS8 cross (C8A) and C57BL/6J X CSS18 (C18A) were also susceptible to S. aureus (median survival < 48 h), whereas F1 mice from C57BL/6J X CSS11 cross (C11A) were resistant (median survival > 120 h) to S. aureus. Bacterial loads in the kidney were consistent with F1 median survivals, with higher bacterial counts in susceptible mice. No sexlinked associations with susceptibility were noted in F1 intercrosses. Using whole genome transcription profiling, we identified a total of 192 genes on chromosomes 8, 11, and 18 which are differentially expressed between A/J and C57BL/6J in the setting of S. aureus infection. Of these, 28 genes had Gene Ontology annotations indicating a potential immune response function. These 28 genes are associated with susceptibility to S. aureus in A/J mice, and are potential determinants of susceptibility to S. aureus infection in humans.

Publication Title

Two genes on A/J chromosome 18 are associated with susceptibility to Staphylococcus aureus infection by combined microarray and QTL analyses.

Sample Metadata Fields

Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact