refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17 results
Sort by

Filters

Technology

Platform

accession-icon GSE13530
An essential role for the antiviral endoribonuclease, RNase-L, in antibacterial immunity.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Type I interferons were discovered as the primary antiviral cytokines and are now known to serve critical functions in host defense against bacterial pathogens. Accordingly, established mediators of interferon antiviral activity may mediate previously unrecognized antibacterial functions. RNase-L is the terminal component of an RNA decay pathway that is an important mediator of interferon-induced antiviral activity. Here we identify a novel role for RNase-L in the host antibacterial response. RNase-L-/- mice exhibited a dramatic increase in mortality following

Publication Title

An essential role for the antiviral endoribonuclease, RNase-L, in antibacterial immunity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57867
Cyclin D1 Determines Androgen Dependent DNA Damage Sensing and Repair
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Murine prostate epithelial cells (PECs) were obtained from Ccnd1-/- and Ccnd1+/+ FvB mice (2-3 months of age). RNA extracted from PECs (3 technical replicates for each group) was labeled and used to probe Affymetrix 430_2.0 arrays.

Publication Title

Cyclin D1 Promotes Androgen-Dependent DNA Damage Repair in Prostate Cancer Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18430
Identification of angiotensin II-responsive genes in the kidney
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

In order to characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1 ug/kg/min), using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. At baseline, 405 genes were differentially expressed (>1.5X) between WT and KO kidneys. Of these, more than 80% were up-regulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ~805 genes was altered (18% up-regulated, 82% repressed). Genes in metabolism and ion transport pathways were up-regulated while there was attenuated expression of protective genes against oxidative stress including glutathione synthetase and mitochondrial SOD2. Angiotensin II infusion has little effect on blood pressure in KOs. Nonetheless, expression of more than 250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were up-regulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation.

Publication Title

Gene expression profiles linked to AT1 angiotensin receptors in the kidney.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE11035
Effect of 5HTT knockout and heterozygosity in whole mouse lung
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Rationale: While modulation of the serotonin transporter (5HTT) has shown to be a risk factor for pulmonary arterial hypertension for almost 40 years, there is a lack of in vivo data about the broad molecular effects of pulmonary inhibition of 5HTT. Previous studies have suggested effects on inflammation, proliferation, and vasoconstriction. The goal of this study was to determine which of these were supported by alterations in gene expression in serotonin transporter knockout mice. Methods: Eight week old normoxic mice with a 5-HTT knock-out (5HTT-/-) and their heterozygote(5HTT+/-) or wild-type(5HTT+/+) littermates had right ventricular systolic pressure(RVSP) assessed, lungs collected for RNA, pooled, and used in duplicate in Affymetrix array analysis. Representative genes were confirmed by quantitative RT-PCR and western blot. Results: RVSP was normal in all groups. Only 124 genes were reliably changed between 5HTT-/- and 5HTT+/+ mice. More than half of these were either involved in inflammatory response or muscle function and organization; in addition, some matrix, heme oxygenase, developmental, and energy metabolism genes showed altered expression. Quantitative RT-PCR for examples from each major group confirmed changes seen by array, with an intermediate level in 5HTT+/- mice. Conclusions: These results for the first time show the in vivo effects of 5HTT knockout in lungs, and show that many of the downstream mechanisms suggested by cell culture and ex vivo experiments are also operational in vivo. This suggests that the effect of 5HTT on pulmonary vascular function arises from its impact on several systems, including vasoreactivity, proliferation, and immune function.

Publication Title

Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23114
Cell cyclin kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Sle2c1 is an NZM2410-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. Here we showed that expression of Sle2c1 enhances NZB cellular phenotypes that have been associated with autoimmune pathogenesis. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin kinase inhibitor p18INK4c (p18), as the top candidate gene for inducing the Slec2c1 associated expansion of B1a cells. A novel SNP in the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and B1a cells from Sle2c1-carrying mice, which leads to defective G1 cell cycle arrest in splenic B cells and increased proliferation of Pc B1a cells. As cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c play a critical role in B1a cell self renewal, and that its impaired expression leads to an accumulation of these cells with high autoreactive potential.

Publication Title

Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43710
Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43708
Expression data from Influenza A infected mouse primary tracheal epithelial cell cultures (MTEC), from wild-type, IFNAR1-/-, IL28Ra-/- and IFNAR1-/- IL28Ra-/- double ko
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global programme of gene expression in response to Influenza A (PR8) infection

Publication Title

Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31561
Transcriptional analysis of organ-specific toxicity induced by a panPPAR agonist in mice: Identification of organ-specific toxicity biomarkers
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

In this study, we aim to identify candidate biomarkers which may be useful as surrogate indicators of toxicity for pre-clinical development of panPPAR-agonist drug candidates. Gene expression microarray, histopathology and clinical chemistry data were generated from liver, heart, kidney and skeletal muscles of three groups of mice administered with three different dosages of an experimental pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist, PPM-201, for 14 days. The histopathology and clinical chemistry data were compared with the gene expression analysis and candidate biomarker genes were identified.

Publication Title

Simultaneous non-negative matrix factorization for multiple large scale gene expression datasets in toxicology.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE21381
Germinal center T follicular helper cell IL-4 production is dependent on SLAM receptor (CD150)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.

Publication Title

Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21379
Expression Data from WT and Sh2d1a-/- in vivo follicular helper CD4 T cells (TFH) versus non follicular helper CD4 T cells (non-TFH)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.

Publication Title

Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact