refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 49 results
Sort by

Filters

Technology

Platform

accession-icon GSE49129
Otitis Media Impact on Ear
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Otitis media impacts hundreds of mouse middle and inner ear genes.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE49128
Otitis Media Impact on Middle Ear
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

Objective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition.

Publication Title

Otitis media impacts hundreds of mouse middle and inner ear genes.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE49122
Otitis Media Impact on Inner Ear
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

Objective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition.

Publication Title

Otitis media impacts hundreds of mouse middle and inner ear genes.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE49237
Analysis of TBR1 downnstream target genes in embryonic forebrains
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

TBR1 is a forebrain specific T-box transcription factor. Tbr1-/- mice have been characterized by defective axonal projections from cerebral cortex and abnormal neuronal migration of cerebral cortex and amygdala.

Publication Title

Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15750
Enhancing CD8 T Cell Memory by Modulating Fatty Acid Metabolism
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

CD8 T cells play a crucial role in immunity to infection and cancer. They are maintained in constant numbers, but upon stimulation with antigen undergo a developmental program characterized by distinct phases encompassing the expansion and then contraction of antigen-specific populations, followed by the persistence of long-lived memory cells. Although this predictable pattern of a CD8 T cell response is well established, the underlying cellular mechanisms regulating the transition to memory remain undefined. Here we show that TRAF6, an adapter protein in the TNF-receptor (TNFR) and IL-1R/TLR superfamily, regulates CD8 T cell memory development following infection by modulating fatty acid metabolism. We show that mice with a T cell-specific deletion of TRAF6 mount robust primary CD8 T cell effector responses, but have a profound defect in their ability to generate memory. This defect is CD8 T cell intrinsic and is characterized by the disappearance of antigen-specific cells in the weeks following primary immunization. Microarray analyses revealed that TRAF6-deficient CD8 T cells from early timepoints following immunization exhibit altered expression of genes that regulate fatty acid metabolism. Consistent with this, activated CD8 T cells lacking TRAF6 are unable to upregulate mitochondrial -oxidation in response to growth factor withdrawal in vitro. Treatment with drugs that induce fatty acid oxidation enabled CD8 T cell memory generation in the absence of TRAF6. Remarkably, these treatments also increased CD8 T cell memory in wild type mice, and consequently were able to significantly improve the efficacy of an experimental anti-cancer vaccine.

Publication Title

Enhancing CD8 T-cell memory by modulating fatty acid metabolism.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE13493
Expression data from developing thymocytes of N15TCR transgenic Rag2 deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

T cell development relies on the precise developmental control of various cellular functions for appropriate positive and negative selection. Previously, gene expression profiling of peptide-driven negative selection events in the N15 TCR class I MHC-restricted mouse and D011.10 TCR class II MHC-restricted mouse has offered insights into the coordinate engagement of biological processes affecting thymocyte development. However, there has been little comparable detailed in vivo global genome expression analysis reported for positive selection.

Publication Title

PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25640
Expression data from wild type or FIZZ2 knockout murine lungs
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

To study the possible fibrotic role of FIZZ2, bleomycin was used to induce pulmonary fibrosis in wild type and FIZZZ2 knockout mice, lungs were then harvested and processed for RNA isolation.

Publication Title

FIZZ2/RELM-β induction and role in pulmonary fibrosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE101165
Expression data of wildtype and miR-146a-deficient 2D2 transgenic T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used the Affymetrix GeneChip Mouse Genome 430 2.0 Arrays to compare the gene expression profiles of wildtype and miR-146a-deficient 2D2 transgenic T cells.

Publication Title

miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33302
Expression data from sleep deprivation experiment in mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global programme of gene expression underlying the effect of sleep deprivation in the mouse hippocampus and identified distinct classes of regulated genes during this process.

Publication Title

Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE9725
Gene expression data after acute withdrawal of TERT in mouse skin
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

TERT is an essential protein component of telomerase, a ribonuclearprotein complex that protects chromosomal ends. Ectopic expression of TERT in mouse skin activates hair follicle stem cells and induces active growth phase of hair cycles, called anagen. This activity of TERT is independent of its reverse transcriptase function, indicating that this is a non-telomeric function of TERT.

Publication Title

TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact