refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 156 results
Sort by

Filters

Technology

Platform

accession-icon GSE18742
Increased Expression of Angiogenic Genes in the Brains of Mouse Meg3-null Embryos
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

MEG3 (Maternally Expressed Gene 3) is a non-coding RNA that is highly expressed in the normal human brain and pituitary. Expression of MEG3 is lost in gonadotroph-derived clinically non-functioning pituitary adenomas. Meg3 knock-out mice were generated to identify targets and potential functions of this gene in embryonic development and tumorigenesis. Gene expression profiles were compared in the brains of Meg3-null embryos and wild-type litter-mate controls using microarray analysis. Microarray data were analyzed with GeneSifter which uses Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) classifications to identify signaling cascades and functional categories of interest within the data set. Differences were found in signaling pathways and ontologies related to angiogenesis between wild-type and knock-out embryos. Quantitative RT-PCR and histological staining showed increased expression of some VEGF pathway genes and increased cortical microvessel density in the knock-out embryos. These results are consistent with reported increases in VEGF signaling observed in human clinically non-functioning pituitary adenomas. In conclusion, Meg3 may play an important role in control of vascularization in the brain and may function as a tumor suppressor by preventing angiogenesis.

Publication Title

Increased expression of angiogenic genes in the brains of mouse meg3-null embryos.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102588
Expression data from calvaria of 10-day-old 13del-tg transgenic mice displaying bone overgrowth.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The ectopic expression of a Col10a1-13del transgene in osteocytes induced ER stress, compromising their differentiation and expression of Sclerostin, resulting in generalized bone overgrowth resembling human crainodiaphyseal chondrodysplasia (CCD).

Publication Title

Activating the unfolded protein response in osteocytes causes hyperostosis consistent with craniodiaphyseal dysplasia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36826
Neutrophil-derived IL-1 is sufficient for abscess formation in immunity against Staphylococcus aureus in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis of S. aureus-infected skin revealed that induction of neutrophil recruitment genes was largely dependent upon IL-1beta/IL-1R activation. Unexpectedly, using IL 1beta reporter mice, neutrophils were identified as the primary source of IL-1beta at the site of infection. Furthermore, IL-1beta-producing neutrophils were necessary and sufficient for abscess formation and bacterial clearance. S. aureus-induced IL 1beta production by neutrophils required TLR2, NOD2, FPRs and the ASC/NLRP3 inflammasome. Taken together, IL-1beta and neutrophil abscess formation during an infection are functionally, spatially and temporally linked as a consequence of direct IL-1beta production by neutrophils.

Publication Title

Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9725
Gene expression data after acute withdrawal of TERT in mouse skin
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

TERT is an essential protein component of telomerase, a ribonuclearprotein complex that protects chromosomal ends. Ectopic expression of TERT in mouse skin activates hair follicle stem cells and induces active growth phase of hair cycles, called anagen. This activity of TERT is independent of its reverse transcriptase function, indicating that this is a non-telomeric function of TERT.

Publication Title

TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107292
Expression data and genome-wide maps of chromatin in Phf8 knock out and wild type mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phf8 histone demethylase deficiency causes cognitive impairments through the mTOR pathway.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE107210
Expression data from hippocampus of Phf8 knock out and wild type mice
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

We used microarrays to detail the global programme gene expression of Phf8 knock out and wild type mice

Publication Title

Phf8 histone demethylase deficiency causes cognitive impairments through the mTOR pathway.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE28035
Expression data from mouse oral keratinocyte
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Keratinocytes are the major constituent of epithelial cells at mucosal surfaces and skin, which cover organs, internal cavities and the body. Traditionally, keratinocytes have been considered as an inert component of the multilayered epithelium to protect the subepithelial compartments from the pathogenic microorganisms, toxic stimuli and physical trauma. However, accumulated researches of the airway, gastrointestinal tract and skin have demonstrated that keratinocytes function in the development of the immune system, promotion of pathologic inflammation and even impose diverse decisions on immune cells.

Publication Title

Genome-wide analysis reveals the active roles of keratinocytes in oral mucosal adaptive immune response.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE57641
Expression data from intestinal epithelial cells (IECs) [Mouse430_2 array]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Polycomb group (PcG) proteins are epigenetic silencers whose dysregulation is frequently linked to cancer via mechanisms that remain unclear. Using conditional knock-out mice in a colitis-associated colorectal cancer (CAC) model, we found that Bmi1 and Mel18 are important initiation and maintenance factors during CAC tumorigenesis. Epithelial depletion of both Bmi1 and Mel18, but not either gene alone, significantly reduces tumor growth and multiplicity.

Publication Title

BMI1 and MEL18 Promote Colitis-Associated Cancer in Mice via REG3B and STAT3.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69306
Significant obesity associated gene expression changes are in the stomach but not intestines in obese mice
  • organism-icon Mus musculus
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon

Description

The gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.

Publication Title

Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17184
ConA-induced fulminant hepatitis in a mouse model
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The goal of this experiment was to investigate the early mechanisms of human fulminant hepatitis through ConA-induced hepatitis model.Early diagnosis and interventions are important for patients with fulminant hepatitis and gene expression may be pivotal in the early diagnosis.

Publication Title

Genes related to the very early stage of ConA-induced fulminant hepatitis: a gene-chip-based study in a mouse model.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact