refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 85 results
Sort by

Filters

Technology

Platform

accession-icon GSE35003
Gene expression in control and cilia deleted growth plate chondrocytes
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Proliferative zone chondrocytes were microdissected from control and Ift88-deleted growth plates to determine gene expression profiles regulated by primary cilia.

Publication Title

Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20152
The role of SphK1 in hTNF induced inflammation
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

The study analyzes analyzes gene expression changes in the ankle joint in mouse TNFa overexpression models with or without sphingosine kinase 1 activity.

Publication Title

Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3203
Influenza virus infection-induced gene expression changes of regional B cells are mediated in part through type I IFN
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

Influenza virus infection-induced gene expression changes of regional B cells are mediated at least in part through type I Interferon:

Publication Title

Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE102588
Expression data from calvaria of 10-day-old 13del-tg transgenic mice displaying bone overgrowth.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The ectopic expression of a Col10a1-13del transgene in osteocytes induced ER stress, compromising their differentiation and expression of Sclerostin, resulting in generalized bone overgrowth resembling human crainodiaphyseal chondrodysplasia (CCD).

Publication Title

Activating the unfolded protein response in osteocytes causes hyperostosis consistent with craniodiaphyseal dysplasia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12413
Prediction of left ventricle systolic dysfunction in mice using gene expression profiling
  • organism-icon Mus musculus
  • sample-icon 86 Downloadable Samples
  • Technology Badge Icon

Description

We tested the hypothesis that a set of differentially expressed genes could be used to predict cardiovascular phenotype in mice after prolonged catecholamine stress.

Publication Title

Gene expression profiling: classification of mice with left ventricle systolic dysfunction using microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15181
Expression profiles of cancer cells with anchorage-independent growth ability
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE13690
Gene expression profiling of murine MLL leukemias (whole BM)
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon

Description

The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional sub-program more akin to that of embryonic stem cells (ESCs) than adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3 and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when co-expressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells to prognosis in human cancer.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15161
Expression data from retroviral vector-infected immortalized mouse embryonic fibroblasts (MEFs)
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

Cultured cancer cells exhibit substantial phenotypic heterogeneity when measured in a variety of ways such as sensitivity to drugs or the capacity to grow under various conditions. Among these, the ability to exhibit anchorage-independent cell growth (colony forming capacity in semisolid media) has been considered to be fundamental in cancer biology because it has been connected with tumor cell aggressiveness in vivo such as tumorigenic and metastatic potentials, and also utilized as a marker for in vitro transformation. Although multiple genetic factors for anchorage-independence have been identified, the molecular basis for this capacity is still largely unknown. To investigate the molecular mechanisms underlying anchorage-independent cell growth, we have used genome-wide DNA microarray studies to develop an expression signature associated with this phenotype. Using this signature, we identify a program of activated mitochondrial biogenesis associated with the phenotype of anchorage-independent growth and importantly, we demonstrate that this phenotype predicts potential for metastasis in primary breast and lung tumors.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48007
Targeted disruption of Hotair leads to homeotic transformation and de-repression of imprinted genes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Targeted disruption of Hotair leads to homeotic transformation and gene derepression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13693
Gene expression profiling of normal mouse myeloid cell populations
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Normal myeloid lineage cell populations (C57BL/6 mice, aged 4-10 weeks, male or female) with three distinct immunophenotypes were prospectively isolated and characterized. In preparation for FACS sorting, bone marrow cells were separated into c-kit+ and c-kit- fractions using an AutoMACS device. C-kit+ cells were further fractionated based on Gr1 and Mac1 expression, and absence of lineage antigen expression (B220, TER119, CD3, CD4, CD8 and IL7R), by cell sorting. C-kit+ Gr1+ Mac1lo/- and c-kit+ Gr1+ Mac1+ displayed cytologic features of undifferentiated hematopoietic cells or myeloblasts, whereas c-kit- Gr1+ Mac1+ cells were mature neutrophils.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact